Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21

This article has been updated

Abstract

The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-κB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-κB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-κB. Transfection of cells with a miR-21 precursor blocked NF-κB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PDCD4-deficient mice are protected from the lethality of LPS.
Figure 2: PDCD4 protein expression is regulated by LPS.
Figure 3: Regulation of TLR signaling by PDCD4.
Figure 4: Induction of miR-21 by LPS treatment in macrophages.
Figure 5: Regulation of PDCD4 expression in LPS signaling.
Figure 6: Regulation of PDCD4 function by miR-21 in TLR signaling (a) ELISA of mouse IL-10 in RAW264.7 cells transfected with various doses (horizontal axes) of pro-miR-21 (left), anti-miR-21 (middle) or morpho-21 (right) and then stimulated for 24 h with LPS (100 ng/ml).

Similar content being viewed by others

Change history

  • 06 December 2009

    In the version of this article initially published online, several author names and affiliations are incorrect. The correct names and affiliations are as follows: Frederick J Sheedy1, Eva Palsson-McDermott1, Elizabeth J Hennessy1, Cara Martin2,3, John J O'Leary2,3, Qingguo Ruan4, Derek S Johnson4, Youhai Chen4 & Luke A J O'Neill1 1School of Biochemistry & Immunology, Trinity College, Dublin, Ireland. 2Department of Pathology, Coombe Women's Hospital, Dublin, Ireland. 3Department of Histopathology, School of Medicine, Trinity College, Dublin, Ireland. 4Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, USA. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  2. Iwami, K.I. et al. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J. Immunol. 165, 6682–6686 (2000).

    Article  CAS  Google Scholar 

  3. Janssens, S., Burns, K., Vercammen, E., Tschopp, J. & Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett. 548, 103–107 (2003).

    Article  CAS  Google Scholar 

  4. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  Google Scholar 

  5. Palsson-McDermott, E.M. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat. Immunol. 10, 579–586 (2009).

    Article  CAS  Google Scholar 

  6. Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  Google Scholar 

  7. Murray, P.J. STAT3-mediated anti-inflammatory signalling. Biochem. Soc. Trans. 34, 1028–1031 (2006).

    Article  CAS  Google Scholar 

  8. Taganov, K.D., Boldin, M.P., Chang, K.J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  Google Scholar 

  9. Shibahara, K. et al. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 166, 297–301 (1995).

    Article  CAS  Google Scholar 

  10. Yang, H.S., Knies, J.L., Stark, C. & Colburn, N.H. Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 22, 3712–3720 (2003).

    Article  CAS  Google Scholar 

  11. Onishi, Y., Hashimoto, S. & Kizaki, H. Cloning of the TIS gene suppressed by topoisomerase inhibitors. Gene 215, 453–459 (1998).

    Article  CAS  Google Scholar 

  12. Yang, H.S. et al. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-κB or ODC transactivation. Oncogene 20, 669–676 (2001).

    Article  CAS  Google Scholar 

  13. Yang, H.S. et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol. 23, 26–37 (2003).

    Article  Google Scholar 

  14. Loh, P.G. et al. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J. 28, 274–285 (2009).

    Article  CAS  Google Scholar 

  15. Hilliard, A. et al. Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J. Immunol. 177, 8095–8102 (2006).

    Article  CAS  Google Scholar 

  16. Dorrello, N.V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    Article  CAS  Google Scholar 

  17. Schmid, T. et al. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res. 68, 1254–1260 (2008).

    Article  CAS  Google Scholar 

  18. Asangani, I.A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    Article  CAS  Google Scholar 

  19. Frankel, L.B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008).

    Article  CAS  Google Scholar 

  20. Lu, Z. et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373–4379 (2008).

    Article  CAS  Google Scholar 

  21. Cmarik, J.L. et al. Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc. Natl. Acad. Sci. USA 96, 14037–14042 (1999).

    Article  CAS  Google Scholar 

  22. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA 93, 1065–1070 (1996).

    Article  CAS  Google Scholar 

  23. Graff, J.R. et al. Translation of ODC mRNA and polyamine transport are suppressed in ras-transformed CREF cells by depleting translation initiation factor 4E. Biochem. Biophys. Res. Commun. 240, 15–20 (1997).

    Article  CAS  Google Scholar 

  24. Talotta, F. et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 73–84 (2009).

    Article  CAS  Google Scholar 

  25. Fujita, S. et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J. Mol. Biol. 378, 492–504 (2008).

    Article  CAS  Google Scholar 

  26. Loffler, D. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330–1333 (2007).

    Article  Google Scholar 

  27. Calin, G.A. & Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  28. Cho, W.C. OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6, 60 (2007).

    Article  Google Scholar 

  29. Moschos, S.A. et al. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8, 240 (2007).

    Article  Google Scholar 

  30. Lu, T.X., Munitz, A. & Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 182, 4994–5002 (2009).

    Article  CAS  Google Scholar 

  31. Iliopoulos, D., Malizos, K.N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3, e3740 (2008).

    Article  Google Scholar 

  32. Sonkoly, E. et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2, e610 (2007).

    Article  Google Scholar 

  33. Wu, F. et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology 135, 1624–1635 (2008).

    Article  CAS  Google Scholar 

  34. Zhang, Z. et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab. Invest. 88, 1358–1366 (2008).

    Article  CAS  Google Scholar 

  35. Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579–1588 (2007).

    Article  CAS  Google Scholar 

  36. Cheng, Y. et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. 170, 1831–1840 (2007).

    Article  CAS  Google Scholar 

  37. O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104, 1604–1609 (2007).

    Article  CAS  Google Scholar 

  38. Ceppi, M. et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA 106, 2735–2740 (2009).

    Article  CAS  Google Scholar 

  39. Thai, T.H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  Google Scholar 

  40. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  CAS  Google Scholar 

  41. Bazzoni, F. et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA 106, 5282–5287 (2009).

    Article  CAS  Google Scholar 

  42. Liu, G. et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl. Acad. Sci. USA (2009).

  43. Alsaleh, G. et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J. Immunol. 182, 5088–5097 (2009).

    Article  CAS  Google Scholar 

  44. Chen, X.M., Splinter, P.L., O'Hara, S.P. & LaRusso, N.F. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 282, 28929–28938 (2007).

    Article  CAS  Google Scholar 

  45. Tili, E. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089 (2007).

    Article  CAS  Google Scholar 

  46. Naora, H., Altin, J.G. & Young, I.G. TCR-dependent and -independent signaling mechanisms differentially regulate lymphokine gene expression in the murine T helper clone D10.G4.1. J. Immunol. 152, 5691–5702 (1994).

    CAS  PubMed  Google Scholar 

  47. Nemeth, Z.H. et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J. Immunol. 175, 8260–8270 (2005).

    Article  CAS  Google Scholar 

  48. Sharma, A. et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl. Acad. Sci. USA 106, 5761–5766 (2009).

    Article  CAS  Google Scholar 

  49. van Duin, D., Medzhitov, R. & Shaw, A.C. Triggering TLR signaling in vaccination. Trends Immunol. 27, 49–55 (2006).

    Article  CAS  Google Scholar 

  50. Cook, D.N., Pisetsky, D.S. & Schwartz, D.A. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5, 975–979 (2004).

    Article  CAS  Google Scholar 

  51. Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 97, 10162–10167 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Golenbock (University of Massachusetts) for wild-type, MyD88-deficient and TRIF-deficient BMDMs immortalized by retrovirus; R. Hay (University of St. Andrews) for p65-deficient and matched wild-type control mouse embryonic fibroblasts and for HA-tagged ubiquitin; R. Hofmeister (Universitaet Regensburg) for 5× NF-κB reporter luciferase plasmid; A.M. Cheng (Ambion) for the pMIR-REPORT miR-21 reporter luciferase plasmid; and A. Bowie (Trinity College, Dublin) for the Il10 promoter–luciferase plasmid. Supported by Science Foundation Ireland and the Irish Research Council for Science, Engineering and Technology (RS/2005/190).

Author information

Authors and Affiliations

Authors

Contributions

F.J.S. did the functional experiments on PDCD4 and miR-21 and cowrote the manuscript; E.P.-M. did experiments on PDCD4 degradation by the proteasome and experiments on signals in PDCD4-deficient cells; E.J.H. helped with experiments on miR-21; C.M. and J.J.O. provided advice on miRNA profiling experiments; Q.R., D.S.J. and Y.C. did the experiments on the lethality of LPS in PDCD4–deficient mice and supplied BMDMs from the mice; and L.A.J.O. directed the work and cowrote the manuscript.

Corresponding author

Correspondence to Luke A J O'Neill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheedy, F., Palsson-McDermott, E., Hennessy, E. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141–147 (2010). https://doi.org/10.1038/ni.1828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing