Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NF-κB at the crossroads of life and death

Abstract

The choice between life and death is one of the major events in regulation of the immune system. T cells that specifically recognize viral or bacterial antigens are selected to survive and proliferate in response to infection, whereas those that are self-reactive are eliminated via apoptosis. Even the survival of alloreactive T cells requires their proper costimulation and, when infection subsides, the activated T cells are eliminated. A major regulator of such life or death decisions is the transcription factor NF-κB. However, NF-κB cannot function alone. A variety of mechanisms exist to modulate its activity and thereby affect the ultimate outcome of a cell's fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IKK can activate NF-κB transcription factors via two distinct pathways.
Figure 2: Signaling cascades used by TNFR1 and Fas to trigger apoptosis.
Figure 3: NF-κB induces a variety of anti-apoptotic factors that can prevent TNF-α–induced apoptosis.

Similar content being viewed by others

References

  1. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, P. J. & Karin, M. NF-κB – A pivotal transcription factor in chronic inflammatory diseases. New Engl. J. Med. 336, 1066–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Alcamo, E. et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J. Immunol. 167, 1592–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Franzoso, G. et al. Mice deficient in NF-κB/p52 present with defects in humoral responses, germinal center reactions, and splenic reactions. J. Exp. Med. 187, 147–159 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Attar, R. M. et al. Genetic approaches to study Rel/NF-κB/IκB function in mice. Semin. Cancer Biol. 8, 93–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Senftleben, U., Li, Z.-W., Baud, V. & Karin, M. IKKβ is essential for protecting T cells from TNFα-induced apoptosis. Immunity 14, 217–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, C.-Y., Mayo, M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNFα-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Z.-G., Hu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Solan, N. J., Miyoshi, H., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277, 1405–1418 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.-F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Delhase, M., Hayakawa, M., Chen, Y. & Karin, M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z.-W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for NF-κB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89, 413–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Sizemore, N., Leung, S. & Stark, G. R. Activation of phosphatidylinositol 3-kinase in response to Interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19, 4798–4805 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Madrid, L. V. et al. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol. Cell. Biol. 20, 1626–1638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell. Biol. 11, 372–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Makris, C. et al. Female mice heterozygote for IKKγ/NEMO deficiencies develop a genodermatosis similar to the human X-linked disorder Incontinentia Pigmenti. Mol. Cell 15, 969–979 (2000).

    Article  Google Scholar 

  25. Doi, T. S. et al. Absence of TNF rescues RelA-deficient mice from embryonic lethality. Proc. Natl Acad. Sci. USA 96, 2994–2999 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenfeld, M. E., Prichard, L., Shiojiri, N. & Fausto, N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR1 double knockout mice. Am. J. Pathol. 156, 997–1007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Horwitz, B. H., Scott, M. L., Cherry, S. R., Bronson, R. T. & Baltimore, D. Failure of lymphopoiesis after adoptive transfer of NF-κB-deficient fetal liver cells. Immunity 6, 765–772 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Baldwin, A. S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Invest. 107, 241–246 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chu, Z. L. et al. Suppression of TNF-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc. Natl Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong, S. Y. et al. Involvement of two NF-κB binding elements in TNFα-, CD40-, and Epstein-Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J. Biol. Chem. 275, 18022–18028 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Shu, H. B., Takeuchi, M. & Goeddel, D. V. The TNF2 signal transducers TRAF2 and c-IAP1 are components of the TNF1 signaling complex. Proc. Natl Acad. Sci. USA 93, 13973–13978 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liston, P. et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi, R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chai, J. et al. Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Y. et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the IBR domain. Cell 104, 781–790 (2001).

    CAS  PubMed  Google Scholar 

  40. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Conte, D., Liston, P., Wong, J. W., Wight, K. E. & Korneluk, R. G. Thymocyte-targeted overexpression of xiap transgene disrupts T lymphoid apoptosis and maturation. Proc. Natl Acad. Sci. USA 98, 5049–5054 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stehlik, C. et al. NF-κB-regulated xiap gene expression protects endothelial cells from TNFα-induced apoptosis. J. Exp. Med. 188, 211–216 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embyronic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Shu, H. B., Halpin, D. R. & Goeddel, D. V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6, 751–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, E. Y., Orlofsky, A., Berger, M. S. & Prystowsky, M. B. Characterizaiton of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J. Immunol. 151, 1979–1988 (1993).

    CAS  PubMed  Google Scholar 

  51. Wang, C. Y., Guttridge, D. C., Mayo, M. W. & Baldwin, A. S. Jr NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol. 19, 5923–5929 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grumont, R. J., Rourke, I. J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1998).

    Article  Google Scholar 

  53. Lee, H. H., Dadgostart, H., Cheng, Q., Shu, J. & Cheng, G. NF-κB-mediated upregulation of Bcl-X and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, ′–′ (1999).

  55. Hamasaki, A. et al. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J. Exp. Med. 188, 1985–1992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tamatani, M. et al. TNF induces Bcl-2 and Bcl-x expression through NF-κB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tsukahara, T. et al. Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-κB in apoptosis-resistant T-cell transfectants with Tax. J. Virol. 73, 7981–7987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khoshnan, A. et al. The NF-κB cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J. Immunol. 165, 1743–1754 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, C., Edelstein, L. C. & Gelinas, C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bel-x(L). Mol. Cell. Biol. 20, 2687–2695 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bentires-Alj, M. et al. Inhibition of the NF-κB transcription factor increases Bax expression in cancer cell lines. Oncogene 20, 2805–2813 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, M. X., Ao, Z., Prasad, K. V., Wu, R. & Schlossman, S. F. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival. Science 281, 998–1001 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Schafer, H., Arlt, A., Trauzold, A., Hunermann-Jansen, A. & Schmidt, W. E. The putative apoptosis inhibitor IEX-1L is a mutant nonspliced variant of p22(PRG1/IEX-1) and is not expressed in vivo. Biochem. Biophys. Res. Commun. 262, 139–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, S. Y. et al. TRAF2 is essential for JNK but not NF-κB activation and regulates lymphocyte proliferation and survival. Immunity 7, 703–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Verheij, M. et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Natoli, G. et al. Activation of SAPK/JNK by TNFR1 through a noncytotoxic TRAF2-dependent pathway. Science 275, 200–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. De Smaele, E. et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Javelaud, D. & Besancon, F. NF-κB activation results in rapid inactivation of JNK in TNFα-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-κB. Oncogene 20, 4365–4372 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Fornace, A. J. J., Jackman, J., Hollander, M. C., Hoffman-Liebermann, B. & Liebermann, D. A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. NY Acad. Sci. 663, 139–153 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Lenczowski, J. M. et al. Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis. Mol. Cell. Biol. 17, 170–181 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Duckett, C. S. & Thompson, C. B. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev. 11, 2810–2821 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arch, R. H., Gedrich, R. W. & Thompson, C. B. Translocation of TRAF proteins regulates apoptotic threshold of cells. Biochem. Biophys. Res. Commun. 272, 936–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leo, E. et al. TRAF1 is a substrate of caspases activated during TNFRα-induced apoptosis. J. Biol. Chem. 276, 8087–8093 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Schwenzer, R. et al. The human TNF TRAF1 is upregulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-κB and c-Jun N-terminal kinase. J. Biol. Chem. 274, 19368–19374 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Tang, G., Yang, J., Minemoto, Y. & Lin, A. Blocking caspase-3-mediated proteolysis of IKKβ suppresses TNFα-induced apoptosis. Mol. Cell 8, 1005–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Reuther, J. Y. & Baldwin, A. S. Jr Apoptosis promotes a caspase-induced amino-terminal truncation of IκBα that functions as a stable inhibitor of NF-κB. J. Biol. Chem. 274, 20664–20670 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Barkett, M., Xue, D., Horvitz, H. R. & Gilmore, T. D. Phosphorylation of IκBα inhibits its cleavage by caspase CPP32 in vitro. J. Biol. Chem. 272, 29419–29422 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Levkau, B., Scatena, M., Giachelli, C. M., Ross, R. & Raines, E. W. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop. Nature Cell Biol. 1, 227–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Clem, R. J. et al. c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J. Biol. Chem. 276, 7602–7608 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Clem, R. J. et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc. Natl Acad. Sci. USA 95, 554–559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fujita, N., Nagahashi, A., Nagashima, K., Rokudai, S. & Tsuruo, T. Acceleration of apoptotic cell death after the cleavage of Bel-XL protein by caspase-3-like proteases. Oncogene 17, 1295–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFβ, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Freire-de-Lima, C. G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Mills, S. D. et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl Acad. Sci. USA 94, 12638–12643 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kasof, G. M. et al. TNFα induces the expression of DR6, a member of the TNF receptor family, through activation of NF-κB. Oncogene 20, 7965–7975 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Ravi, R. et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-κB. Nature Cell Biol. 3, 409–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, Y. et al. NF-κB RelA (p65) is essential for TNFα-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J. Immunol. 166, 4949–4957 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med. 6, 435–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Medzhitov, R. CpG DNA: security code for host defense. Nature Immunol. 2, 15–16 (2001).

    Article  CAS  Google Scholar 

  97. Mitchell, T. C. et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nature Immunol. 2, 397–402 (2001).

    Article  CAS  Google Scholar 

  98. Dechend, R. et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 18, 3316–3323 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Adams for help with manuscript preparation and A. Fornace for disclosing unpublished results. Supported by grants from the National Institutes of Health, the State of California Cancer Research Program and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karin, M., Lin, A. NF-κB at the crossroads of life and death. Nat Immunol 3, 221–227 (2002). https://doi.org/10.1038/ni0302-221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0302-221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing