Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased diversity of intestinal antimicrobial peptides by covalent dimer formation

Abstract

Antimicrobial peptides are essential effector molecules of the innate immune system. Here we describe the structure, function and diversity of cryptdin-related sequence (CRS) peptides, a large family of antimicrobial molecules. We identified the peptides as covalent dimers in mouse intestinal tissue in amounts comparable to those of Paneth cell–derived enteric α-defensins. CRS peptides caused rapid and potent killing of commensal and pathogenic bacteria. The CRS peptides formed homo- and heterodimers in vivo, thereby expanding the repertoire of antimicrobial peptides and increasing the peptide diversity of Paneth cell secretions. CRS peptides might therefore be important in the maintenance of the microbial homeostasis within the intestinal tract.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence analysis of new CRS peptides.
Figure 2: Isolation of CRS peptides from intestinal tissue.
Figure 3: In vitro dimerization of CRS peptides.
Figure 4: Antibacterial activity of CRS peptides.
Figure 5: Differential antibacterial spectrum of CRS peptides.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immun. 13, 61–92 (1995).

    Article  CAS  Google Scholar 

  2. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  Google Scholar 

  3. Salzman, N.H., Ghosh, D., Huttner, K.M., Paterson, Y. & Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    Article  CAS  Google Scholar 

  4. Pütsep, K., Carlsson, G., Boman, H.G. & Andersson, M. Deficiency of antibacterial peptides in patients with morbus Kostman: an observation study. Lancet 360, 1144–1149 (2002).

    Article  Google Scholar 

  5. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002)

    Article  CAS  Google Scholar 

  6. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  7. Selsted, M.E. & Harwig, S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem. 264, 4003–4007 (1989).

    CAS  PubMed  Google Scholar 

  8. Bevins, C.L., Martin-Porter, E. & Ganz, T. Defensins and innate host defence of the gastrointestinal tract. Gut 45, 911–915 (1999).

    Article  CAS  Google Scholar 

  9. Huttner, K.M., Selsted, M.E. & Ouellette, A.J. Structure and diversity of the murine cryptdin gene family. Genomics 19, 448–453 (1994).

    Article  CAS  Google Scholar 

  10. Selsted, M.E., Miller, S.I., Henschen, A.H. & Ouellette, A.J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).

    Article  CAS  Google Scholar 

  11. Ouellette, A.J. et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun. 62, 5040–5047 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, C.L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    Article  CAS  Google Scholar 

  13. Pütsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).

    Article  Google Scholar 

  14. Ouellette, A.J. & Lualdi, J.C. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J. Biol. Chem. 265, 9831–9837 (1990).

    CAS  PubMed  Google Scholar 

  15. Huttner, K.M. & Ouellette, A.J. A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells. Genomics 24, 99–109 (1994).

    Article  CAS  Google Scholar 

  16. Turner, J., Cho, Y., Dinh, N.N., Waring, A.J. & Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206–2214 (1998).

    Article  CAS  Google Scholar 

  17. Hultmark, D. et al. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571–576 (1983).

    Article  CAS  Google Scholar 

  18. Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977)

    Article  CAS  Google Scholar 

  19. Porter, E.M., Bevins, C.L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).

    Article  CAS  Google Scholar 

  20. Ouellette, A.J. & Bevins, C.L. Paneth cell defensins and innate immunity of the small bowel. Inflamm. Bowel Dis. 7, 43–50 (2001).

    Article  CAS  Google Scholar 

  21. Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat. Immunol. 3, 583–90 (2002).

    Article  CAS  Google Scholar 

  22. Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem. 277, 5219–5228 (2002)

    Article  CAS  Google Scholar 

  23. Darmoul, D., Brown, D., Selsted, M.E. & Ouellette, A.J. Cryptdin gene expression in developing mouse small intestine. Am. J. Physiol. 272, G197–206 (1997).

    CAS  PubMed  Google Scholar 

  24. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  25. Hooper, L.V., Stappenbeck, T.S., Hong, C.V. & Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 3, 269–273 (2003)

    Article  Google Scholar 

  26. Hornef, M.W., Frisan, T., Normark, S. & Richter-Dahlfors, A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med. 165, 559–570 (2002).

    Article  Google Scholar 

  27. Ortega-Cava, C.F. et al. Strategic compartmentalization of toll-like receptor 4 in the mouse gut. J. Immunol. 170, 3977–3985 (2003).

    Article  CAS  Google Scholar 

  28. Wehkamp, J. et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 9, 215–23 (2003).

    Article  Google Scholar 

  29. Beck, D.C. et al. The role of homodimers in surfactant protein B function in vivo. J. Biol. Chem. 275, 3365–3370 (2000).

    Article  CAS  Google Scholar 

  30. Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers (Peptide Science) 66, 236–248 (2002).

    Article  CAS  Google Scholar 

  31. Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta. 1462, 1–10 (1999).

    Article  CAS  Google Scholar 

  32. Hristova, K., Selsted, M.E. & White, S.H. Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35, 11888–11894 (1996).

    Article  CAS  Google Scholar 

  33. Hill, C.P., Yee, J., Selsted, M.E. & Eisenberg, D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251, 1481–1485 (1991).

    Article  CAS  Google Scholar 

  34. Zhang, X.L., Selsted, M.E. & Pardi, A. NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary structure determination of rabbit NP-2 and human HNP-1. Biochemistry 31, 11348–11356 (1992).

    Article  CAS  Google Scholar 

  35. Schibli, D.J. et al. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem. 277, 8279–8289 (2002).

    Article  CAS  Google Scholar 

  36. Dempsey, C.E., Ueno, S. & Avison, M.B. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42, 402–409 (2003).

    Article  CAS  Google Scholar 

  37. Yomogida, S., Nagaoka, I. & Yamashita, T. Purification of the 11- and 5-kDa antibacterial polypeptides from guinea pig neutrophils. Arch. Biochem. Biophys. 328, 219–226 (1996).

    Article  CAS  Google Scholar 

  38. Batista, C.V. et al. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett. 494, 85–89 (2001).

    Article  CAS  Google Scholar 

  39. Holmgren, A. & Björnstedt, M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 252, 199–208 (1995).

    Article  CAS  Google Scholar 

  40. Bens, M. et al. Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype. Am. J. Physiol. 270, C1666–C1674 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.G. Boman, S. Normark, C.L. Bevins and A.J. Ouellette for discussions; E. Cederlund for the Edman degradations; and R.A. Harris for linguistic advice. Supported by the Karolinska Institutet (5472/2000FFU to M.W.H.), German Research Foundation (HO 2236/5-1 to M.W.H.), Swedish Research Council (K2003-31P-14792 to M.W.H., K2002-06X-12634 to M.A. and K2003-06XD-14653 to K.P.), Cancerfonden (M.W.H.), AFAs hälsofond (K.P.), Swedish Society for Medical Research (K.P.), The King Oscar II Jubilee Foundation (M.A.) and The Magnus Bergwall Foundation (M.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Andersson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Absent cytotoxicity of the oxidized and reduced form of the CRS peptides in eukaryotic cells. (PDF 80 kb)

Supplementary Fig. 2

CRS binds LPS and diminishes the immunostimulatory activity. (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornef, M., Pütsep, K., Karlsson, J. et al. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 5, 836–843 (2004). https://doi.org/10.1038/ni1094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing