Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of interleukin 7–dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5

Abstract

Rearrangement of immunoglobulin heavy-chain variable (VH) gene segments has been suggested to be regulated by interleukin 7 signaling in pro–B cells. However, the genetic evidence for this recombination pathway has been challenged. Furthermore, no molecular components that directly control VH gene rearrangement have been elucidated. Using mice deficient in the interleukin 7–activated transcription factor STAT5, we demonstrate here that STAT5 regulated germline transcription, histone acetylation and DNA recombination of distal VH gene segments. STAT5 associated with VH gene segments in vivo and was recruited as a coactivator with the transcription factor Oct-1. STAT5 did not affect the nuclear repositioning or compaction of the immunoglobulin heavy-chain locus. Therefore, STAT5 functions at a distinct step in regulating distal VH recombination in relation to the transcription factor Pax5 and histone methyltransferase Ezh2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAT5 regulates rearrangement and germline transcription of distal VHJ558 genes.
Figure 2: STAT5 is required for distal VHJ558 gene transcription but not for nuclear repositioning and compaction of the Igh locus.
Figure 3: STAT5 crosslinks to VHJ558 promoters and regulates histone acetylation.
Figure 4: IL-7 signaling regulates VHJ558 germline transcription, histone acetylation and STAT5 binding in vivo.
Figure 5: Oct-1 can mediate STAT5 recruitment to VHJ558 promoters.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  2. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  Google Scholar 

  3. Fugmann, S.D., Lee, A.I., Shockett, P.E., Villey, I.J. & Schatz, D.G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    Article  CAS  Google Scholar 

  4. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  Google Scholar 

  5. Schlissel, M.S. & Stanhope-Baker, P. Accessibility and the developmental regulation of V(D)J recombination. Semin. Immunol. 9, 161–170 (1997).

    Article  CAS  Google Scholar 

  6. Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  Google Scholar 

  7. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  Google Scholar 

  8. Roldan, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    Article  CAS  Google Scholar 

  9. McBlane, F. & Boyes, J. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10, 483–486 (2000).

    Article  CAS  Google Scholar 

  10. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  11. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of VH gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).

    Article  CAS  Google Scholar 

  12. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  Google Scholar 

  13. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  14. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  15. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat. Immunol. 5, 309–316 (2004).

    Article  CAS  Google Scholar 

  16. Johnson, K. et al. B cell–specific loss of histone 3 lysine 9 methylation in the VH locus depends on Pax5. Nat. Immunol. 5, 853–861 (2004).

    Article  CAS  Google Scholar 

  17. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  18. Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    Article  CAS  Google Scholar 

  19. Bolland, D.J. et al. Antisense intergenic transcription in V(D)J recombination. Nat. Immunol. 5, 630–637 (2004).

    Article  CAS  Google Scholar 

  20. Riblet, R. Immunoglobulin heavy chain genes of mouse. in Molecular Biology of B Cells (eds. Honjo, T., Alt, F.W. & Neuberger, M.S.) 19–26 (Elsevier Science, London, UK, 2004).

    Chapter  Google Scholar 

  21. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  Google Scholar 

  22. Hsu, L.Y., Liang, H.E., Johnson, K., Kang, C. & Schlissel, M.S. Pax5 activates immunoglobulin heavy chain V to DJ rearrangement in transgenic thymocytes. J. Exp. Med. 199, 825–830 (2004).

    Article  CAS  Google Scholar 

  23. Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).

    Article  CAS  Google Scholar 

  24. Goetz, C.A., Harmon, I.R., O'Neil, J.J., Burchill, M.A. & Farrar, M.A. STAT5 activation underlies IL7 receptor-dependent B cell development. J. Immunol. 172, 4770–4778 (2004).

    Article  CAS  Google Scholar 

  25. Carvalho, T.L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7−/− mice. J. Exp. Med. 194, 1141–1150 (2001).

    Article  CAS  Google Scholar 

  26. Miller, J.P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  Google Scholar 

  27. Dias, S., Silva, H., Jr., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  Google Scholar 

  28. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  Google Scholar 

  29. Sexl, V. et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  30. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  Google Scholar 

  31. Rascle, A. & Lees, E. Chromatin acetylation and remodeling at the Cis promoter during STAT5-induced transcription. Nucleic Acids Res. 31, 6882–6890 (2003).

    Article  CAS  Google Scholar 

  32. Matsumoto, A. et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89, 3148–3154 (1997).

    CAS  PubMed  Google Scholar 

  33. Yokota, H., van den Engh, G., Hearst, J.E., Sachs, R.K. & Trask, B.J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J. Cell Biol. 130, 1239–1249 (1995).

    Article  CAS  Google Scholar 

  34. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357–1371 (1991).

    Article  CAS  Google Scholar 

  35. Haines, B.B., Angeles, C.V., Parmelee, A.P., McLean, P.A. & Brodeur, P.H. Germline diversity of the expressed BALB/c VhJ558 gene family. Mol. Immunol. 38, 9–18 (2001).

    Article  CAS  Google Scholar 

  36. Bertolino, E., Tiedt, R., Matthias, P. & Singh, H. Role of octamer transcription factors and their coactivators in the lymphoid system. in Transcription Factors: Normal and Malignant Development of Blood Cells (eds. Ravid, K. & Licht, J.) 294–311 (Wiley-Liss, New York, 2000).

    Google Scholar 

  37. Magne, S., Caron, S., Charon, M., Rouyez, M.C. & Dusanter-Fourt, I. STAT5 and Oct-1 form a stable complex that modulates cyclin D1 expression. Mol. Cell. Biol. 23, 8934–8945 (2003).

    Article  CAS  Google Scholar 

  38. Ye, S.K. et al. The IL-7 receptor controls the accessibility of the TCRγ locus by Stat5 and histone acetylation. Immunity 15, 813–823 (2001).

    Article  CAS  Google Scholar 

  39. Lee, H.L. & Archer, T.K. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14, 32–41 (1994).

    Article  CAS  Google Scholar 

  40. Pfitzner, E., Jahne, R., Wissler, M., Stoecklin, E. & Groner, B. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol. Endocrinol. 12, 1582–1593 (1998).

    Article  CAS  Google Scholar 

  41. Bertolino, E. & Singh, H. POU/TBP cooperativity: a mechanism for enhancer action from a distance. Mol. Cell 10, 397–407 (2002).

    Article  CAS  Google Scholar 

  42. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  Google Scholar 

  43. Wang, V.E., Tantin, D., Chen, J. & Sharp, P.A. B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc. Natl. Acad. Sci. USA 101, 2005–2010 (2004).

    Article  CAS  Google Scholar 

  44. Smithson, G., Medina, K., Ponting, I. & Kincade, P.W. Estrogen suppresses stromal cell-dependent lymphopoiesis in culture. J. Immunol. 155, 3409–3417 (1995).

    CAS  PubMed  Google Scholar 

  45. DeKoter, R.P., Lee, H.J. & Singh, H.P.U. 1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

    Article  CAS  Google Scholar 

  46. Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).

    Article  CAS  Google Scholar 

  47. Lord, J.D., McIntosh, B.C., Greenberg, P.D. & Nelson, B.H. The IL-2 receptor promotes proliferation, bcl-2 and bcl-x induction, but not cell viability through the adapter molecule Shc. J. Immunol. 161, 4627–4633 (1998).

    CAS  PubMed  Google Scholar 

  48. Solovei, I. et al. FISH on three-dimensionally preserved nuclei. in FISH: a Practical Approach (eds. Beatty, B., Mai, S. & Squire, J.) 119–157 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  49. Spector, D.L., Goldman, R.D. & Leinwand, L.A. Fluorescence in situ hybridization to DNA. in Cells: a Laboratory Manual Vol 3 111.1–112.11 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank members of the laboratory for comments and criticisms. Supported by the Irvington Institute (K.L.M.) and Howard Hughes Medical Institute (H.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

STAT5 regulates rearrangement of distal VHJ558 genes. (PDF 391 kb)

Supplementary Fig. 2

DNA sequences analysis of VHJ558 family members. (PDF 4512 kb)

Supplementary Fig. 3

STAT5 regulates histone acetylation and Oct-1 binding to VHJ558 promoters. (PDF 300 kb)

Supplementary Fig. 4

Immunoblot analysis of STAT5, Oct-1 and TBP in response to IL-7 signaling in Rag2−/− pro-B cells. (PDF 496 kb)

Supplementary Fig. 5

Gel shift assays with VH or VHmut J558 oligonucleotide duplexes described in Fig. 5 (PDF 277 kb)

Supplementary Table 1

The sequence of forward (U) and reverse (L) primers used for PCR in the RT-PCR, gene rearrangement and Chip assays are indicated. (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolino, E., Reddy, K., Medina, K. et al. Regulation of interleukin 7–dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 6, 836–843 (2005). https://doi.org/10.1038/ni1226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing