Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity

Abstract

Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We show that two pathogen recognition receptors, Toll-like receptor 2 (TLR2) and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid metabolizing enzyme retinaldehyde dehydrogenase type 2 and interleukin-10 (IL-10) and to metabolize vitamin A and stimulate Foxp3+ T regulatory cells (Treg cells). Retinoic acid acted on DCs to induce suppressor of cytokine signaling-3 expression, which suppressed activation of p38 mitogen-activated protein kinase and proinflammatory cytokines. Consistent with this finding, TLR2 signaling induced Treg cells and suppressed IL-23 and T helper type 17 (TH17) and TH1-mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and proinflammatory cytokines and augmented TH17 and TH1-mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of retinoic acid and immune suppression against autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of induction of vitamin-A metabolizing enzymes in splenic DCs.
Figure 2: Retinoic acid and IL-10 work synergistically to induce Foxp3+ Treg cells.
Figure 3: Retinoic acid and IL-10 exert autocrine effects on DCs to induce Socs3, which regulates activation of p38 MAPK and pro-inflammatory cytokines.
Figure 4: Induction of antigen-specific IL-10+ TR1 and Treg cells in vivo.
Figure 5: Zymosan suppresses IL-23 and TH17–mediated EAE.
Figure 6: Mechanism of induction of Raldh2 in DCs.

Similar content being viewed by others

References

  1. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  2. Pulendran, B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227–250 (2004).

    Article  CAS  Google Scholar 

  3. Wu, L. & Liu, Y.J. Development of dendritic-cell lineages. Immunity 26, 741–750 (2007).

    Article  CAS  Google Scholar 

  4. Palucka, A.K., Ueno, H., Fay, J.W. & Banchereau, J. Taming cancer by inducing immunity via dendritic cells. Immunol. Rev. 220, 129–150 (2007).

    Article  CAS  Google Scholar 

  5. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  Google Scholar 

  6. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  7. Pasare, C. & Medzhitov, R. Toll-like receptors and acquired immunity. Semin. Immunol. 16, 23–26 (2004).

    Article  CAS  Google Scholar 

  8. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  9. Van Kooyk, Y. & Geijtenbeek, T.B. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709 (2003).

    Article  CAS  Google Scholar 

  10. Brown, G.D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  Google Scholar 

  11. Brown, G.D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002).

    Article  CAS  Google Scholar 

  12. Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  Google Scholar 

  13. Gantner, B.N., Simmons, R.M., Canavera, S.J, Akira, S. & Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  Google Scholar 

  14. Underhill, D.M. Collaboration between the innate immune receptors dectin-1, TLRs and Nods. Immunol. Rev. 219, 75–87 (2007).

    Article  CAS  Google Scholar 

  15. Brown, G.D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  Google Scholar 

  16. Rogers, N.C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  Google Scholar 

  17. Slack, E.C. et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37, 1600–1612 (2007).

    Article  CAS  Google Scholar 

  18. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  Google Scholar 

  19. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17–producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  20. Zhou, L. et al. TGF-β–induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  Google Scholar 

  21. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  22. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  Google Scholar 

  23. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  24. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  25. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  Google Scholar 

  26. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  Google Scholar 

  27. Denning, T.L., Wang, Y.C., Patel, S.R., Williams, I.R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  CAS  Google Scholar 

  28. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid–dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  Google Scholar 

  29. Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  Google Scholar 

  30. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  Google Scholar 

  31. Cao, W. et al. Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI3K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    Article  CAS  Google Scholar 

  32. Singh, M., Chakrapani, A. & O' Hagan, D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev. Vaccines 6, 797–808 (2007).

    Article  CAS  Google Scholar 

  33. Mora, J.R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  Google Scholar 

  34. Johansson-Lindbom, B. & Agace, W.W. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Rev. 215, 226–242 (2007).

    Article  CAS  Google Scholar 

  35. Zapata-Gonzalez, F. et al. 9-cis-Retinoic acid (9cRA), a retinoid X receptor (RXR) ligand, exerts immunosuppressive effects on dendritic cells by RXR-dependent activation: inhibition of peroxisome proliferator–activated receptor γ blocks some of the 9cRA activities, and precludes them to mature phenotype development. J. Immunol. 178, 6130–6139 (2007).

    Article  CAS  Google Scholar 

  36. Saurer, L., McCullough, K.C. & Summerfield, A. In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179, 3504–3514 (2007).

    Article  CAS  Google Scholar 

  37. Geissmann, F. et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J. Exp. Med. 198, 623–634 (2003).

    Article  CAS  Google Scholar 

  38. Tao, Y., Yang, Y. & Wang, W. Effect of all-trans-retinoic acid on the differentiation, maturation and functions of dendritic cells derived from cord blood monocytes. FEMS Immunol. Med. Microbiol. 47, 444–450 (2006).

    Article  CAS  Google Scholar 

  39. Bastien, J. & Rochette-Egly, C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328, 1–16 (2004).

    Article  CAS  Google Scholar 

  40. de The, H., Vivanco-Ruiz, M.M., Tiollais, P., Stunnenberg, H. & Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343, 177–180 (1990).

    Article  CAS  Google Scholar 

  41. Duester, G., Shean, M.L., McBride, M.S. & Stewart, M.J. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Mol. Cell. Biol. 11, 1638–1646 (1991).

    Article  CAS  Google Scholar 

  42. Leroy, P., Nakshatri, H. & Chambon, P. Mouse retinoic acid receptor α 2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc. Natl. Acad. Sci. USA 88, 10138–10142 (1991).

    Article  CAS  Google Scholar 

  43. Szatmari, I. et al. PPARγ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J. Exp. Med. 203, 2351–2362 (2006).

    Article  CAS  Google Scholar 

  44. Manicassamy, S. & Pulendran, B. Retinoic acid–dependent regulation of immune responses by dendritic cells and macrophages. Semin. Immunol. 21, 22–27 (2009).

    Article  CAS  Google Scholar 

  45. Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nat. Immunol. 4, 1169–1176 (2003).

    Article  CAS  Google Scholar 

  46. Shouda, T. et al. Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108, 1781–1788 (2001).

    Article  CAS  Google Scholar 

  47. Dalpke, A.H., Opper, S., Zimmermann, S. & Heeg, K. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J. Immunol. 166, 7082–7089 (2001).

    Article  CAS  Google Scholar 

  48. Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct TH responses via differential modulation of extracellular signal-regulated kinase–mitogen-activated protein kinase and c-Fos. J. Immunol. 171, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  49. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates TH2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  Google Scholar 

  50. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  Google Scholar 

  51. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Aguilar Mertens and L. Bonner for assistance with cell sorting; D. Levesque for assistance with animal husbandry; S. Akira (Research Institute for Microbial Diseases, Osaka University) for supplying Tlr2−/− mice; G. Brown (University of Cape Town) for dectin-1–deficient mice; and G. Landreth (Case Western Reserve University) for Erk1-deficient mice. This work was supported by funding from the US National Institutes of Health (grants R01 DK057665, R01 AI048638, U19 AI057266, U54 AI057157, N01 AI50019 and N01 AI50025) and from the Bill & Melinda Gates Foundation to B.P.

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed the experiments in the study, prepared the figures and helped write the paper. R.R. assisted S.M. with some of the experiments. J.D. performed some of the initial experiments. H.O. performed the immunohistology analysis. T.L.D. provided discussion and advice on some parts of the study. S.P.K. encapsulated disulphiram in microparticles. K.M.R. and B.D.E. assisted with the EAE experiments. B.P. conceived and supervised the study and, with S.M., wrote the paper.

Corresponding author

Correspondence to Bali Pulendran.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–12 and Supplementary Methods (PDF 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manicassamy, S., Ravindran, R., Deng, J. et al. Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat Med 15, 401–409 (2009). https://doi.org/10.1038/nm.1925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing