Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fetomaternal immune cross-talk and its consequences for maternal and offspring's health

Abstract

An improved mechanistic understanding of the adaptational processes mounted during mammalian reproduction is emerging. Intricate pathways occurring at the fetomaternal interface, such as the formation of a functional synapse between invading fetal trophoblast cells, and the involvement of various maternal immune cell subsets and epigenetically modified decidual stromal cells have now been identified. These complex pathways synergistically create a tolerogenic niche in which the semiallogeneic fetus can develop. New insights into fetomaternal immune cross-talk may help us to understand the pathogenesis of pregnancy complications as well as poor postnatal health. Moreover, the effects of maternal immune adaptation to pregnancy on autoimmune disease activity are becoming increasingly evident. Thus, insights into fetomaternal immune cross-talk not only advance our understanding of pregnancy-related complications but also may be informative on how immune tolerance can be modulated in clinical settings outside the context of reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key pathways involved in immune tolerance toward the fetus during the first trimester of human pregnancy.
Figure 2: Generation and function of CD4+ Treg cells T cell receptor-expressing thymocytes can upregulate FoxP3 and differentiate into Treg cells in the thymus (tTreg cells, top).
Figure 3: Fetomaternal immune cross-talk: consequences for pregnancy maintenance and postnatal health.

Similar content being viewed by others

References

  1. Owen, R.D. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400–401 (1945).

    Article  CAS  PubMed  Google Scholar 

  2. Medawar, P.B. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–338 (1953).

    Google Scholar 

  3. Billingham, R.E., Brent, L. & Medawar, P.B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  4. Elliot, M.G. & Crespi, B.J. Placental invasiveness mediates the evolution of hybrid inviability in mammals. Am. Nat. 168, 114–120 (2006).

    Article  PubMed  Google Scholar 

  5. Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6, 584–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, H. et al. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J. Immunol. 151, 4562–4573 (1993).

    CAS  PubMed  Google Scholar 

  7. Chaouat, G. The Th1/Th2 paradigm: still important in pregnancy? Semin. Immunopathol. 29, 95–113 (2007).

    Article  PubMed  Google Scholar 

  8. Kim, M.R. et al. Progesterone-dependent release of transforming growth factor-β1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol. Hum. Reprod. 11, 801–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dunn, C.L., Kelly, R.W. & Critchley, H.O. Decidualization of the human endometrial stromal cell: an enigmatic transformation. Reprod. Biomed. Online 7, 151–161 (2003).

    Article  PubMed  Google Scholar 

  10. Norwitz, E.R., Schust, D.J. & Fisher, S.J. Implantation and the survival of early pregnancy. N. Engl. J. Med. 345, 1400–1408 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ren, L., Liu, Y.Q., Zhou, W.H. & Zhang, Y.Z. Trophoblast-derived chemokine CXCL12 promotes CXCR4 expression and invasion of human first-trimester decidual stromal cells. Hum. Reprod. 27, 366–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Aplin, J.D., Charlton, A.K. & Ayad, S. An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. Cell Tissue Res. 253, 231–240 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Lockwood, C.J. et al. Decidual cell-expressed tissue factor in human pregnancy and its involvement in hemostasis and preeclampsia-related angiogenesis. Ann. NY Acad. Sci. 1127, 67–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Segerer, S.E. et al. MIC-1 (a multifunctional modulator of dendritic cell phenotype and function) is produced by decidual stromal cells and trophoblasts. Hum. Reprod. 27, 200–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Cavanagh, P.C. et al. Gonadotropin-releasing hormone-regulated chemokine expression in human placentation. Am. J. Physiol. Cell Physiol. 297, C17–C27 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, W.H., Du, M.R., Dong, L., Yu, J. & Li, D.J. Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Hum. Reprod. 23, 2669–2679 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, X. et al. Human first-trimester trophoblast cells recruit CD56brightCD16 NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell–derived factor 1. J. Immunol. 175, 61–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hanna, J. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16 human natural killer cells. Blood 102, 1569–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Pearce, W.J. Multifunctional angiogenic factors: add GnRH to the list. Focus on “Gonadotropin-releasing hormone-regulated chemokine expression in human placentation”. Am. J. Physiol. Cell Physiol. 297, C4–C5 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Red-Horse, K., Drake, P.M., Gunn, M.D. & Fisher, S.J. Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles. Am. J. Pathol. 159, 2199–2213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moffett-King, A. Natural killer cells and pregnancy. Nat. Rev. Immunol. 2, 656–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. García-López, M.A. et al. CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab. Invest. 81, 409–418 (2001).

    Article  PubMed  Google Scholar 

  23. Bromley, S.K., Mempel, T.R. & Luster, A.D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Vacca, P. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA 108, 2402–2407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keskin, D.B. et al. TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc. Natl. Acad. Sci. USA 104, 3378–3383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Croy, B.A., van den Heuvel, M.J., Borzychowski, A.M. & Tayade, C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol. Rev. 214, 161–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Chantakru, S., Kuziel, W.A., Maeda, N. & Croy, B.A. A study on the density and distribution of uterine Natural Killer cells at mid pregnancy in mice genetically-ablated for CCR2, CCR 5 and the CCR5 receptor ligand, MIP-1α. J. Reprod. Immunol. 49, 33–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kruse, A., Merchant, M.J., Hallmann, R. & Butcher, E.C. Evidence of specialized leukocyte-vascular homing interactions at the maternal/fetal interface. Eur. J. Immunol. 29, 1116–1126 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. King, A. et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur. J. Immunol. 30, 1623–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Li, C., Houser, B.L., Nicotra, M.L. & Strominger, J.L. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc. Natl. Acad. Sci. USA 106, 5767–5772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van der Meer, A. et al. Membrane-bound HLA-G activates proliferation and interferon-γ production by uterine natural killer cells. Mol. Hum. Reprod. 10, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. LeMaoult, J., Krawice-Radanne, I., Dausset, J. & Carosella, E.D. HLA-G1–expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc. Natl. Acad. Sci. USA 101, 7064–7069 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. King, A. et al. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta 21, 376–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Chazara, O., Xiong, S. & Moffett, A. Maternal KIR and fetal HLA-C: a fine balance. J. Leukoc. Biol. 90, 703–716 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Uhrberg, M. et al. Human diversity in killer cell inhibitory receptor genes. Immunity 7, 753–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Sharkey, A.M. et al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol. 181, 39–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Lyall, F., Bulmer, J.N., Kelly, H., Duffie, E. & Robson, S.C. Human trophoblast invasion and spiral artery transformation: the role of nitric oxide. Am. J. Pathol. 154, 1105–1114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pijnenborg, R., Vercruysse, L. & Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, J. et al. Unusual timing of CD127 expression by mouse uterine natural killer cells. J. Leukoc. Biol. 91, 417–426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karimi, K. et al. Regulation of pregnancy maintenance and fetal survival in mice by CD27low mature NK cells. J. Mol. Med. 90, 1047–1057 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, Y., Zhu, X.Y., Du, M.R. & Li, D.J. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J. Immunol. 180, 2367–2375 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kämmerer, U. et al. Human decidua contains potent immunostimulatory CD83+ dendritic cells. J. Am. J. Pathol. 157, 159–169 (2000).

    Article  Google Scholar 

  44. Blois, S.M. et al. Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol. Reprod. 70, 1018–1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Steinman, R.M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Blois, S.M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13, 1450–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kämmerer, U. et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol. 162, 887–896 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ilarregui, J.M. et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1–driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10, 981–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira, G.B. et al. Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells. J. Proteome Res. 11, 941–971 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bootcov, M.R. et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl. Acad. Sci. USA 94, 11514–11519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Penna, G. et al. 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J. Immunol. 178, 145–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Dotan, I. et al. CXCL12 Is a constitutive and inflammatory chemokine in the intestinal immune system. Inflamm. Bowel Dis. 16, 583–592 (2010).

    Article  PubMed  Google Scholar 

  53. Mjösberg, J., Berg, G., Jenmalm, M.C. & Ernerudh, J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol. Reprod. 82, 698–705 (2010).

    Article  PubMed  CAS  Google Scholar 

  54. Nancy, P. et al. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336, 1317–1321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grégoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Erlebacher, A., Vencato, D., Price, K.A., Zhang, D. & Glimcher, L.H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest. 117, 1399–1411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Collins, M.K., Tay, C.S. & Erlebacher, A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J. Clin. Invest. 119, 2062–2073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Moldenhauer, L.M., Keenihan, S.N., Hayball, J.D. & Robertson, S.A. GM-CSF is an essential regulator of T cell activation competence in uterine dendritic cells during early pregnancy in mice. J. Immunol. 185, 7085–7096 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Moldenhauer, L.M., Hayball, J.D. & Robertson, S.A. Utilising T cell receptor transgenic mice to define mechanisms of maternal T cell tolerance in pregnancy. J. Reprod. Immunol. 87, 1–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Böckle, B.C., Sölder, E., Kind, S., Romani, N. & Sepp, N.T. DC-sign+ CD163+ macrophages expressing hyaluronan receptor LYVE-1 are located within chorion villi of the placenta. Placenta 29, 187–192 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Red-Horse, K. et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J. Clin. Invest. 116, 2643–2652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Redman, C.W. et al. Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 33, S48–S54 (2012).

    Article  PubMed  Google Scholar 

  64. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Hunt, J.S., Vassmer, D., Ferguson, T.A. & Miller, L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158, 4122–4128 (1997).

    CAS  PubMed  Google Scholar 

  66. Bai, X. et al. A placental protective role for trophoblast-derived TNF-related apoptosis-inducing ligand (TRAIL). Placenta 30, 855–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Nagamatsu, T., Schust, D.J., Sugimoto, J. & Barrier, B.F. Human decidual stromal cells suppress cytokine secretion by allogenic CD4+ T cells via PD-1 ligand interactions. Hum. Reprod. 24, 3160–3171 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Petroff, M.G., Kharatyan, E., Torry, D.S. & Holets, L. The immunomodulatory proteins B7-DC, B7–H2, and B7–H3 are differentially expressed across gestation in the human placenta. Am. J. Pathol. 167, 465–473 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taglauer, E.S., Yankee, T.M. & Petroff, M.G. Maternal PD-1 regulates accumulation of fetal antigen-specific CD8+ T cells in pregnancy. J. Reprod. Immunol. 80, 12–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chaouat, G. & Clark, D.A. FAS/FAS ligand interaction at the placental interface is not required for the success of allogeneic pregnancy in anti-paternal MHC preimmunized mice. Am. J. Reprod. Immunol. 45, 108–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Guleria, I. et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J. Exp. Med. 202, 231–237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, J.X., Zeng, Y.Y. & Liu, Y. Fetal alloantigen is responsible for the expansion of the CD4+ CD25+ regulatory T cell pool during pregnancy. J. Reprod. Immunol. 75, 71–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Thuere, C. et al. Kinetics of regulatory T cells during murine pregnancy. Am. J. Reprod. Immunol. 58, 514–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Robertson, S.A., Guerin, L.R., Moldenhauer, L.M. & Hayball, J.D. Activating T regulatory cells for tolerance in early pregnancy - the contribution of seminal fluid. J. Reprod. Immunol. 83, 109–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Mjösberg, J. et al. Systemic reduction of functionally suppressive CD4dimCD25highFoxp3+ Tregs in human second trimester pregnancy is induced by progesterone and 17beta-estradiol. J. Immunol. 183, 759–769 (2009).

    Article  PubMed  CAS  Google Scholar 

  78. Kallikourdis, M., Andersen, K.G., Welch, K.A. & Betz, A.G. Alloantigen-enhanced accumulation of CCR5+ 'effector' regulatory T cells in the gravid uterus. Proc. Natl. Acad. Sci. USA 104, 594–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rowe, J.H., Ertelt, J.M., Xin, L. & Way, S.S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490, 102–106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zinaman, M.J., O'Connor, J., Clegg, E.D., Selevan, S.G. & Brown, C.C. Estimates of human fertility and pregnancy loss. Fertil. Steril. 65, 503–509 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Clark, D.A. Immunological factors in pregnancy wastage: fact or fiction. Am. J. Reprod. Immunol. 59, 277–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Redman, C.W. & Sargent, I.L. Latest advances in understanding preeclampsia. Science 308, 1592–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Andersen, K.G., Nissen, J.K. & Betz, A.G. Comparative Genomics Reveals Key Gain-of-Function Events in Foxp3 during Regulatory T Cell Evolution. Front. Immunol. 3, 113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samstein, R.M., Josefowicz, S.Z., Arvey, A., Treuting, P.M. & Rudensky, A.Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blois, S.M. et al. Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J. Immunol. 172, 5893–5899 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Tilburgs, T. et al. Differential distribution of CD4+CD25bright and CD8+CD28 T-cells in decidua and maternal blood during human pregnancy. Placenta 27, S47–S53 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. Norton, M.T., Fortner, K.A., Oppenheimer, K.H. & Bonney, E. Evidence that CD8 T-cell homeostasis and function remain intact during murine pregnancy. Immunology 131, 426–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rieger, L. et al. Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia—a prospective observational study. Reprod. Biol. Endocrinol. 7, 132 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Aït-Azzouzene, D. et al. Transgenic major histocompatibility complex class I antigen expressed in mouse trophoblast affects maternal immature B cells. Biol. Reprod. 65, 337–344 (2001).

    Article  PubMed  Google Scholar 

  92. Medina, K.L., Smithson, G. & Kincade, P.W. Suppression of B lymphopoiesis during normal pregnancy. J. Exp. Med. 178, 1507–1515 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Shao, L., Jacobs, A.R., Johnson, V.V. & Mayer, L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol. 174, 7539–7547 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ernest, J.M., Marshburn, P.B. & Kutteh, W.H. Obstetric antiphospholipid syndrome: an update on pathophysiology and management. Semin. Reprod. Med. 29, 522–539 (2011).

    Article  PubMed  Google Scholar 

  95. Veltman-Verhulst, S.M., Cohlen, B.J., Hughes, E. & Heineman, M.J. Intra-uterine insemination for unexplained subfertility. Cochrane Database Syst. Rev. 9, CD001838 (2012).

    Google Scholar 

  96. Chard, T. Frequency of implantation and early pregnancy loss in natural cycles. Baillieres Clin. Obstet. Gynaecol. 5, 179–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Wilcox, A.J. et al. Incidence of early loss of pregnancy. N. Engl. J. Med. 319, 189–194 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Rai, R. & Regan, L. Recurrent miscarriage. Lancet 368, 601–611 (2006).

    Article  PubMed  Google Scholar 

  99. Scherjon, S., Lashley, L., van der Hoorn, M.L. & Claas, F. Fetus specific T cell modulation during fertilization, implantation and pregnancy. Placenta 32 (suppl. 4), S291–S297 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Clark, D.A., Chaouat, G., Guenet, J.L. & Kiger, N. Local active suppression and successful vaccination against spontaneous abortion in CBA/J mice. J. Reprod. Immunol. 10, 79–85 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, A.X. et al. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol. Reprod. 75, 414–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Jeschke, U., Toth, B., Scholz, C., Friese, K. & Makrigiannakis, A. Glycoprotein and carbohydrate binding protein expression in the placenta in early pregnancy loss. J. Reprod. Immunol. 85, 99–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Jin, L.P., Chen, Q.Y., Zhang, T., Guo, P.F. & Li, D.J. The CD4+CD25bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin. Immunol. 133, 402–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Shimada, S. et al. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from sporadic miscarriage. Am. J. Reprod. Immunol. 56, 193–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Erlebacher, A., Zhang, D., Parlow, A.F. & Glimcher, L.H. Ovarian insufficiency and early pregnancy loss induced by activation of the innate immune system. J. Clin. Invest. 114, 39–48 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mao, G. et al. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology 151, 5477–5488 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Hiby, S.E. et al. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum. Reprod. 23, 972–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Gonzalez, J.M., Franzke, C.W., Yang, F., Romero, R. & Girardi, G. Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am. J. Pathol. 179, 838–849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haddad, R. et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am. J. Obstet. Gynecol. 195, 394.e1–394.24 (2006).

    Google Scholar 

  110. Barker, D.J. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 49, 270–283 (2006).

    Article  PubMed  Google Scholar 

  111. Gluckman, P.D., Hanson, M.A., Cooper, C. & Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Solano, M.E., Jago, C., Pincus, M.K. & Arck, P.C. Highway to health; or How prenatal factors determine disease risks in the later life of the offspring. J. Reprod. Immunol. 90, 3–8 (2011).

    Article  PubMed  Google Scholar 

  113. Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  114. Mold, J.E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulat. T cells in utero. Science 322, 1562–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marleau, A.M. et al. Chimerism of murine fetal bone marrow by maternal cells occurs in late gestation and persists into adulthood. Lab. Invest. 83, 673–681 (2003).

    Article  PubMed  Google Scholar 

  116. Dutta, P. et al. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 114, 3578–3587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wienecke, J. et al. Pro-inflammatory effector Th cells transmigrate through anti-inflammatory environments into the murine fetus. Placenta 33, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Nelson, J.L. et al. Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet beta cell microchimerism. Proc. Natl. Acad. Sci. USA 104, 1637–1642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ye, Y. et al. Maternal microchimerism in muscle biopsies from children with juvenile dermatomyositis. Rheumatology 51, 987–991 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yan, Z., Aydelotte, T., Gadi, V.K., Guthrie, K.A. & Nelson, J.L. Acquisition of the rheumatoid arthritis HLA shared epitope through microchimerism. Arthritis Rheum. 63, 640–644 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kopcow, H.D. et al. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc. Natl. Acad. Sci. USA 105, 18472–18477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vacca, P. et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc. Natl. Acad. Sci. USA 107, 11918–11923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hartwig, I.R., Pincus, M.K., Diemert, A., Hecher, K. & Arck, P.C. Sex-specific effect of first-trimester maternal progesterone on birthweight. Hum. Reprod. 28, 77–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Arck, P.C. et al. Early risk factors for miscarriage: a prospective cohort study in pregnant women. Reprod. Biomed. Online 17, 101–113 (2008).

    Article  PubMed  Google Scholar 

  125. Cannizzo, E.S., Clement, C.C., Sahu, R., Follo, C. & Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J. Proteomics 74, 2313–2323 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Glaser, R. & Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Karimi, K. & Arck, P.C. Natural Killer cells: keepers of pregnancy in the turnstile of the environment. Brain Behav. Immun. 24, 339–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Van Kerkhove, M.D. et al. WHO Working Group for Risk Factors for Severe H1N1. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8, e1001053 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Thiele, K., Kessler, T., Arck, P., Erhardt, A. & Tiegs, G. Acetaminophen and pregnancy: short- and long-term consequences for mother and child. J. Reprod. Immunol. 97, 128–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Brannon, P.M. Vitamin D and adverse pregnancy outcomes: beyond bone health and growth. Proc. Nutr. Soc. 71, 205–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Thorsby, E. A short history of HLA. Tissue Antigens 74, 101–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Kovats, S. et al. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248, 220–223 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. Apps, R. et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127, 26–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lim, H.J. & Wang, H. Uterine disorders and pregnancy complications: insights from mouse models. J. Clin. Invest. 120, 1004–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Madeja, Z. et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc. Natl. Acad. Sci. USA 108, 4012–4017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Confavreux, C., Hutchinson, M., Hours, M.M., Cortinovis-Tourniaire, P. & Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med. 339, 285–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. de Man, Y.A., Dolhain, R.J., van de Geijn, F.E., Willemsen, S.P. & Hazes, J.M. Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum. 59, 1241–1248 (2008).

    Article  PubMed  Google Scholar 

  138. Vukusic, S. et al. Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse. Brain 127, 1353–1360 (2004).

    Article  PubMed  Google Scholar 

  139. Patas, K., Engler, J.B., Friese, M.A. & Gold, S.M. Pregnancy and multiple sclerosis: fetomaternal immune cross talk and its implications for disease activity. J. Reprod. Immunol. 97, 140–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Munoz-Suano, A., Kallikourdis, M., Sarris, M. & Betz, A.G. Regulatory T cells protect from autoimmune arthritis during pregnancy. J. Autoimmun. 38, J103–J108 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Ponsonby, A.L. et al. Offspring number, pregnancy, and risk of a first clinical demyelinating event: the AusImmune Study. Neurology 78, 867–874 (2012).

    Article  PubMed  Google Scholar 

  142. Smyth, A. et al. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin. J. Am. Soc. Nephrol. 5, 2060–2068 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kuroki, M. et al. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren's syndrome. Ann. Rheum. Dis. 61, 1041–1046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Artlett, C.M., Smith, J.B. & Jimenez, S.A. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N. Engl. J. Med. 338, 1186–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Klintschar, M., Schwaiger, P., Mannweiler, S., Regauer, S. & Kleiber, M. Evidence of fetal microchimerism in Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 86, 2494–2498 (2001).

    CAS  PubMed  Google Scholar 

  146. Lateef, A. & Petri, M. Management of pregnancy in systemic lupus erythematosus. Nat. Rev. Rheumatol. 8, 710–718 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Bloch, E.M. et al. Male microchimerism in peripheral blood leukocytes from women with multiple sclerosis. Chimerism 2, 6–10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chan, W.F. et al. Microchimerism in the rheumatoid nodules of patients with rheumatoid arthritis. Arthritis Rheum. 64, 380–388 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The writing of this review article was made possible by grants provided by the German Research Foundation (AR232/19), the Foundation for Research and Science Hamburg (1232/102), the Werner Otto Foundation (4/79), AllerGen NCE (09B6) and the World Health Organization (A65097) to P.C.A. and K.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petra C Arck or Kurt Hecher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arck, P., Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med 19, 548–556 (2013). https://doi.org/10.1038/nm.3160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3160

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research