Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer

Abstract

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor with early dissemination and dismal prognosis, accounts for 15–20% of lung cancer cases and 200,000 deaths each year. Most cases are inoperable, and biopsies to investigate SCLC biology are rarely obtainable. Circulating tumor cells (CTCs), which are prevalent in SCLC, present a readily accessible 'liquid biopsy'. Here we show that CTCs from patients with either chemosensitive or chemorefractory SCLC are tumorigenic in immune-compromised mice, and the resultant CTC-derived explants (CDXs) mirror the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX. Most marked differences were observed between CDXs from patients with different clinical outcomes. These data demonstrate that CTC molecular analysis via serial blood sampling could facilitate delivery of personalized medicine for SCLC. CDXs are readily passaged, and these unique mouse models provide tractable systems for therapy testing and understanding drug resistance mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SCLC CTCs are tumorigenic.
Figure 2: CDXs and mouse micrometastases are representative of patient specimens.
Figure 3: CDXs mirror patient response to therapy.
Figure 4: Genomic analysis of CDX.
Figure 5: Molecular comparison of CDXs and patient CTCs.

Similar content being viewed by others

References

  1. Einhorn, L.H., Fee, W.H., Farber, M.O., Livingston, R.B. & Gottlieb, J.A. Improved chemotherapy for small-cell undifferentiated lung cancer. J. Am. Med. Assoc. 235, 1225–1229 (1976).

    Article  CAS  Google Scholar 

  2. Evans, W.K. et al. VP-16 and cisplatin as first-line therapy for small-cell lung cancer. J. Clin. Oncol. 3, 1471–1477 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Sierocki, J.S. et al. cis-Dichlorodiammineplatinum(II) and VP-16–213: an active induction regimen for small cell carcinoma of the lung. Cancer Treat. Rep. 63, 1593–1597 (1979).

    CAS  PubMed  Google Scholar 

  4. Gazdar, A.F. et al. Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res. 40, 3502–3507 (1980).

    CAS  PubMed  Google Scholar 

  5. Oboshi, S., Tsugawa, S., Seido, T., Shimosato, Y. & Koide, T. A new floating cell line derived from human pulmonary carcinoma of oat cell type. Gann 62, 505–514 (1971).

    CAS  PubMed  Google Scholar 

  6. Pleasance, E.D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Joshi, M., Ayoola, A. & Belani, C.P. Small-cell lung cancer: an update on targeted therapies. Adv. Exp. Med. Biol. 779, 385–404 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. William, W.N. Jr. & Glisson, B.S. Novel strategies for the treatment of small-cell lung carcinoma. Nat. Rev. Clin. Oncol. 8, 611–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Meuwissen, R. et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kwon, M.C. & Berns, A. Mouse models for lung cancer. Mol. Oncol. 7, 165–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daniel, V.C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poupon, M.F. et al. Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. J. Natl. Cancer Inst. 85, 2023–2029 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Davenport, R.D. Diagnostic value of crush artifact in cytologic specimens. Occurrence in small cell carcinoma of the lung. Acta Cytol. 34, 502–504 (1990).

    CAS  PubMed  Google Scholar 

  14. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rudin, C.M. et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. de Bono, J.S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Hayes, D.F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hou, J.M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

    Article  PubMed  Google Scholar 

  20. Krebs, M.G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    Article  PubMed  Google Scholar 

  21. Hou, J.M. et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am. J. Pathol. 175, 808–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evans, W.K. et al. VP-16 alone and in combination with cisplatin in previously treated patients with small cell lung cancer. Cancer 53, 1461–1466 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez, P. et al. Parallel evolution of tumour subclones mimics diversity between tumours. J. Pathol. 230, 356–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Arriola, E. et al. Genetic changes in small cell lung carcinoma. Clin. Transl. Oncol. 10, 189–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Mori, N. et al. Variable mutations of the RB gene in small-cell lung carcinoma. Oncogene 5, 1713–1717 (1990).

    CAS  PubMed  Google Scholar 

  27. Wistuba, I.I. & Gazdar, A.F. & Minna, J.D. Molecular genetics of small cell lung carcinoma. Semin. Oncol. 28, 3–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Allard, W.J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  PubMed  Google Scholar 

  30. Pretlow, T.G. et al. Prostate cancer and other xenografts from cells in peripheral blood of patients. Cancer Res. 60, 4033–4036 (2000).

    CAS  PubMed  Google Scholar 

  31. Ni, X. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. USA 110, 21083–21088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein, C.A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Fabbri, F. et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 335, 225–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Heitzer, E. et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73, 2965–2975 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Klein, C.A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Klein, C.A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Morelli, M.P. et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J. Clin. Oncol. 30, e45–e48 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Board, R.E. et al. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Ann. NY Acad. Sci. 1137, 98–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci .Transl. Med. 6, 224ra224 (2014).

    Article  CAS  Google Scholar 

  41. Dawson, S.J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Krebs, M.G. et al. Molecular analysis of circulating tumour cells—biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Lohmann, D.R. et al. Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma. Am. J. Hum. Genet. 61, 282–294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szijan, I., Lohmann, D.R., Parma, D.L., Brandt, B. & Horsthemke, B. Identification of RB1 germline mutations in Argentinian families with sporadic bilateral retinoblastoma. J. Med. Genet. 32, 475–479 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joerger, A.C. & Fersht, A.R. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2, a000919 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Alcoser, S.Y. et al. Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts. BMC Biotechnol. 11, 124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thierry, A.R. et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38, 6159–6175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peeters, D.J. et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 108, 1358–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Boeva, V. et al. Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 27, 268–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yates, T., Okoniewski, M.J. & Miller, C.J. X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis. Nucleic Acids Res. 36, D780–D786 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the patients who agreed to donate their blood samples for this study. We thank R. Marais, N. Jones and D. Ogilvie for their constructive comments on the manuscript. We thank M. Dawson, M. Lancashire, S. Bramley, J. Halstead and J. Castle, who enumerated CTCs using CellSearch. We thank A. Jardine for administrative support and M. Greaves, our laboratory manager. This research was supported by Cancer Research UK via core funding to the Cancer Research UK Manchester Institute (C5759/A12328), the Manchester Experimental Cancer Medicine Centre (C1467/A15578), the Manchester Cancer Research Centre (A12197) and their Translational Research Award for 2012. Funding to support this work was also provided via the European Union CHEMORES FP6 (contract number LSHG-CT-2007-037665). R.L.M. and L.C. were supported by education grants from Cancer Research UK and AstraZeneca.

Author information

Authors and Affiliations

Authors

Contributions

C.L.H., P.K. and B.B. performed in vivo studies, F.T., R.P., K.L.S. and D.N. conducted histopathological examinations, D.G.R., D.J.B., S.D.P., A.G., J.A., M.G.K., M.A., L.C. and S.F. conducted the genomic analyses, Y.L., C.T., C.J. Miller and G.B. performed the bioinformatic analysis, K.M. oversaw CTC enumeration by CellSearch, R.L.M., L.C., L.P. and F.B. recruited and consented patients and collected blood samples, C.J. Morrow, C.J. Miller, G.B., F.B. and C.D. conceived and directed the study, interpreted the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Caroline Dive.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–7 (PDF 432 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgkinson, C., Morrow, C., Li, Y. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20, 897–903 (2014). https://doi.org/10.1038/nm.3600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing