Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes

Abstract

CD3-specific antibodies have the unique capacity to restore self-tolerance in established autoimmunity. They induce long-term remission of overt diabetes in nonobese diabetic (NOD) mice and in human type I diabetes. The underlying mechanisms had been unclear until now. Here we report that treatment with CD3ε-specific antibodies induces transferable T-cell-mediated tolerance involving CD4+CD25+ cells. However, these CD4+CD25+ T cells are distinct from naturally occurring regulatory T cells that control physiological autoreactivity. CD3-specific antibody treatment induced remission in NOD Cd28−/− mice that were devoid of such regulatory cells. Remission of diabetes was abrogated by coadministration of a neutralizing transforming growth factor (TGF)-β-specific antibody. The central role of TGF-β was further suggested by its increased, long-lasting production by CD4+ T cells from tolerant mice. These data explain the intriguing tolerogenic effect of CD3-specific antibodies and position them as the first clinically applicable pharmacological stimulant of TGF-β-producing regulatory CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD4+CD25+ lymphocytes in CD3-specific antibody–treated NOD mice.
Figure 2: Remission of established diabetes in antibody-treated NOD Cd28−/− mice.
Figure 3: CD4+CD25+ lymphocytes from antibody-treated NOD mice are suppressive in vitro.
Figure 4: TGF-β is produced by CD4+ lymphocytes from CD3-specific antibody–treated mice.
Figure 5: Prevention and reversal of CD3-specific antibody–induced tolerance by an antibody to CTLA-4.

Similar content being viewed by others

References

  1. Simone, E.A., Wegmann, D.R. & Eisenbarth, G.S. Immunologic “vaccination” for the prevention of autoimmune diabetes (type 1A). Diabetes Care 22 (suppl. 2), B7–B15 (1999).

    PubMed  Google Scholar 

  2. Bach, J.F. & Chatenoud, L. Tolerance to islet autoantigens in type 1 diabetes. Annu. Rev. Immunol. 19, 131–161 (2001).

    Article  CAS  Google Scholar 

  3. Chatenoud, L., Thervet, E., Primo, J. & Bach, J.F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in non obese diabetic mice. Proc. Natl. Acad. Sci. USA 91, 123–127 (1997).

    Article  Google Scholar 

  4. Chatenoud, L., Primo, J. & Bach, J.F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  5. Ferran, C. et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur. J. Immunol. 20, 509–515 (1990).

    Article  CAS  Google Scholar 

  6. Hirsch, R., Gress, R.E., Pluznik, D.H., Eckhaus, M. & Bluestone, J.A. Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J. Immunol. 142, 737–743 (1989).

    CAS  PubMed  Google Scholar 

  7. Chatenoud, L., Legendre, C., Ferran, C., Bach, J.F. & Kreis, H. Corticosteroid inhibition of the OKT3-induced cytokine-related syndrome—dosage and kinetics prerequisites. Transplantation 51, 334–338 (1991).

    Article  CAS  Google Scholar 

  8. Abramowicz, D. et al. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47, 606–608 (1989).

    Article  CAS  Google Scholar 

  9. Hirsch, R., Bluestone, J.A., de Nenno, L. & Gress, R.E. Anti-CD3 F(ab′)2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation 49, 1117–1123 (1990).

    Article  CAS  Google Scholar 

  10. Woodle, E.S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  Google Scholar 

  11. Friend, P.J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68, 1632–1637 (1999).

    Article  CAS  Google Scholar 

  12. Herold, K.C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  Google Scholar 

  13. Chatenoud, L. et al. Human in vivo antigenic modulation induced by the anti-T cell OKT3 monoclonal antibody. Eur. J. Immunol. 12, 979–982 (1982).

    Article  CAS  Google Scholar 

  14. Hirsch, R., Eckhaus. M., Auchincloss, H.J.R., Sachs, D.H. & Bluestone, J.A. Effects of in vivo administration of anti-T3 monoclonal antibody on T cell function in mice. I. Immunosuppression of transplantation responses. J. Immunol. 140, 3766–3772 (1988).

    CAS  PubMed  Google Scholar 

  15. Chatenoud, L. & Bach, J.F. Antigenic modulation: a major mechanism of antibody action. Immunol. Today 5, 20–25 (1984).

    Article  CAS  Google Scholar 

  16. Szanya, V., Ermann, J., Taylor, C., Holness, C. & Fathman, C.G. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169, 2461–2465 (2002).

    Article  CAS  Google Scholar 

  17. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  Google Scholar 

  18. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  Google Scholar 

  19. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5327 (1999).

    CAS  PubMed  Google Scholar 

  20. Suri-Payer, E., Kehn, P.J., Cheever, A.W. & Shevach, E.M. Pathogenesis of post-thymectomy autoimmune gastritis. Identification of anti-H/K adenosine triphosphatase-reactive T cells. J. Immunol. 157, 1799–1808 (1996).

    CAS  PubMed  Google Scholar 

  21. Stephens, L.A. & Mason, D. CD25 is a marker for CD4(+) thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25(+) and CD25(−) subpopulations. J. Immunol. 165, 3105–3110 (2000).

    Article  CAS  Google Scholar 

  22. Boitard, C., Yasunami, R., Dardenne, M. & Bach, J.F. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J. Exp. Med. 169, 1669–1680 (1989).

    Article  CAS  Google Scholar 

  23. Lepault, F., Gagnerault, M.C., Faveeuw, C., Bazin, H & Boitard, C. Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur. J. Immunol. 25, 1502–1507 (1995).

    Article  CAS  Google Scholar 

  24. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  25. Chatenoud, L., Salomon, B. & Bluestone, J.A. Suppressor T cells – they're back and critical for the regulation of autoimmunity. Immunol. Rev. 182, 149–163 (2001).

    Article  CAS  Google Scholar 

  26. Lenschow, D.J. et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293 (1996).

    Article  CAS  Google Scholar 

  27. Nakamura, K., Kitani, A. & Strober. W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194, 629–639 (2001).

    Article  CAS  Google Scholar 

  28. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1979 (1998).

    Article  CAS  Google Scholar 

  29. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  Google Scholar 

  30. Piccirillo, C.A. et al. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J. Exp. Med. 196, 237–246 (2002).

    Article  CAS  Google Scholar 

  31. Wang, B. et al. Interleukin-4 deficiency does not exacerbate disease in NOD mice. Diabetes 47, 1207–1211 (1998).

    Article  CAS  Google Scholar 

  32. Lucas, C. et al. The autocrine production of transforming growth factor-beta 1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J. Immunol. 145, 1415–1425 (1990).

    CAS  PubMed  Google Scholar 

  33. Bridoux, F. et al. Transforming growth factor beta (TGF-beta)-dependent inhibition of T helper cell 2 (Th2)-induced autoimmunity by self-major histocompatibility complex (MHC) class II-specific, regulatory CD4(+) T cell lines. J. Exp. Med. 185, 1769–1779 (1997).

    Article  CAS  Google Scholar 

  34. Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–940 (2001).

    Article  CAS  Google Scholar 

  35. Seddon, B. & Mason, D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4(+)CD45RC(−) cells and CD4(+)CD8(−) thymocytes. J. Exp. Med. 189, 279–289 (1999).

    Article  CAS  Google Scholar 

  36. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  Google Scholar 

  37. Chen, W., Jin, W. & Wahl, S.M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857 (1998).

    Article  CAS  Google Scholar 

  38. Yasunami, R. & Bach, J.F. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18, 481–491 (1988).

    Article  CAS  Google Scholar 

  39. Powrie, F., Carlino J., Leach M.W., Mauze, S. & Coffman, R.L. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J. Exp. Med. 183, 2669–2679 (1996).

    Article  CAS  Google Scholar 

  40. Levings, M.K. et al. Human CD4+CD25+ T suppressor clones profuse transforming growth factor β, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med. 196, 1335–1346 (2002).

    Article  CAS  Google Scholar 

  41. Ludviksson, B.R., Ehrhardt, R.O. & Strober, W. TGF-β production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J. Immunol. 159, 3622–3628 (1997).

    CAS  PubMed  Google Scholar 

  42. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1997).

    Article  Google Scholar 

  43. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    Article  CAS  Google Scholar 

  44. Luhder, F., Hoglund, P., Allison, J.P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    Article  CAS  Google Scholar 

  45. Alegre, M.L. et al. An anti-murine CD3 monoclonal antibody with a low affinity for Fc gamma receptors suppresses transplantation responses while minimizing acute toxicity and immunogenicity. J. Immunol. 155, 1544–1555 (1995).

    CAS  PubMed  Google Scholar 

  46. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from INSERM, Association Claude Bernard and Juvenile Diabetes Research Foundation. The authors thank I. Cisse, F. Valette and M. Garcia for managing the animal facility; M. Netter for iconography; C. Garcia for assistance with FACS sorting; M. de la Torre for editing of the manuscript; W. Paul, A. O'Garra and S. Cobbold for providing the monoclonal antibodies used in this study; and D. Mathis and C. Benoist for providing the NOD Il4−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucienne Chatenoud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belghith, M., Bluestone, J., Barriot, S. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9, 1202–1208 (2003). https://doi.org/10.1038/nm924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing