Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Control of DNA replication and its potential clinical exploitation

Abstract

Multiple conserved mechanisms limit DNA replication to once per cell cycle. One vital level of control focuses on the loading of the heterohexameric ring of minichromosome maintenance proteins (MCMs) onto chromatin in the hierarchical assembly of the pre-replication complex at origins of replication. An essential role in proliferation for MCMs and their regulators makes them potentially important biomarkers for routine clinical use in cancer detection and prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors regulating the binding of minichromosome maintenance proteins (MCMs) to chromatin.
Figure 2: Minichromosome maintenance proteins (MCMs) detect cells in cycle in normal and pre-malignant cervical tissue.
Figure 3: Novel methods for histological assessment of cell-cycle state and rate of cycling.

Similar content being viewed by others

References

  1. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  2. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  3. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    Article  CAS  Google Scholar 

  4. Laskey, R. A. & Madine, M. A. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26–30 (2003).

    Article  CAS  Google Scholar 

  5. Dimitrova, D. S., Prokhorova, T. A., Blow, J. J., Todorov, I. T. & Gilbert, D. M. Mammalian nuclei become licensed for DNA replication during late telophase. J. Cell Sci. 115, 51–59 (2002).

    Article  CAS  Google Scholar 

  6. Madine, M. A. et al. The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J. Struct. Biol. 129, 198–210 (2000).

    Article  CAS  Google Scholar 

  7. Laskey, R. A., Harland, R. M., Earnshaw, W. C., Dingwall, C. in International Cell Biology 1980 (ed. Schweiger, H.) (Springer, Heidelberg, 1981).

    Google Scholar 

  8. Blow, J. J., Dilworth, S. M., Dingwall, C., Mills, A. D. & Laskey, R. A. Chromosome replication in cell-free systems from Xenopus eggs. Philos. Trans. R. Soc. Lond. B 317, 483–494 (1987).

    Article  CAS  Google Scholar 

  9. Li, C. J. & DePamphilis, M. L. Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol. Cell. Biol. 22, 105–116 (2002).

    Article  Google Scholar 

  10. Wohlschlegel, J. A. et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309–2312 (2000).

    Article  CAS  Google Scholar 

  11. Tada, S., Li, A., Maiorano, D., Mechali, M. & Blow, J. J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).

    Article  CAS  Google Scholar 

  12. Gonzalez, M. A. et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J. Pathol. 204, 121 (2004).

    Article  CAS  Google Scholar 

  13. Musahl, C., Holthoff, H. P., Lesch, R. & Knippers, R. Stability of the replicative Mcm3 protein in proliferating and differentiating human cells. Exp. Cell Res. 241, 260–264 (1998).

    Article  CAS  Google Scholar 

  14. Stoeber, K. et al. DNA replication licensing and human cell proliferation. J. Cell Sci. 114, 2027–2041 (2001).

    CAS  Google Scholar 

  15. Freeman, A. et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin. Cancer Res. 5, 2121–2132 (1999).

    CAS  PubMed  Google Scholar 

  16. Williams, G. H. et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. Proc. Natl Acad. Sci. USA 95, 14932–14937 (1998).

    Article  CAS  Google Scholar 

  17. Baldwin, P., Laskey, R. & Coleman, N. Translational approaches to improving cervical screening. Nature Rev. Cancer 3, 217–226 (2003).

    Article  CAS  Google Scholar 

  18. Ishimi, Y. et al. Enhanced expression of MCM proteins in cancer cells derived from uterine cervix. Eur. J. Biochem. 270, 1089–1101 (2003).

    Article  CAS  Google Scholar 

  19. Davies, R. J. et al. Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet 359, 1917–1919 (2002).

    Article  CAS  Google Scholar 

  20. Scott, I. S. et al. A novel immunohistochemical method to estimate cell-cycle phase distribution in archival tissue: implications for the prediction of outcome in colorectal cancer. J. Pathol. 201, 187–197 (2003).

    Article  Google Scholar 

  21. Sirieix, P. S. et al. Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett's esophagus. Clin. Cancer Res. 9, 2560–2566 (2003).

    CAS  PubMed  Google Scholar 

  22. Going, J. J. et al. Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett's mucosa. Gut 50, 373–377 (2002).

    Article  CAS  Google Scholar 

  23. Williams, G. H. et al. Diagnosis of oesophageal cancer by detection of minichromosome maintenance 5 protein in gastric aspirates. Br. J. Cancer 91, 714–719 (2004).

    Article  CAS  Google Scholar 

  24. Scott, I. S. et al. A novel immunohistochemical method for estimating cell cycle phase distribution in ovarian serous neoplasms: implications for the histopathological assessment of paraffin-embedded specimens. Br. J. Cancer 90, 1583–1590 (2004).

    Article  CAS  Google Scholar 

  25. Chatrath, P. et al. Aberrant expression of minichromosome maintenance protein-2 and Ki67 in laryngeal squamous epithelial lesions. Br. J. Cancer 89, 1048–1054 (2003).

    Article  CAS  Google Scholar 

  26. Stoeber, K. et al. Immunoassay for urothelial cancers that detects DNA replication protein Mcm5 in urine. Lancet 354, 1524–1525 (1999).

    Article  CAS  Google Scholar 

  27. Davidson, E. J. et al. Minichromosome maintenance (Mcm) proteins, cyclin B1 and D1, phosphohistone H3 and in situ DNA replication for functional analysis of vulval intraepithelial neoplasia. Br. J. Cancer 88, 257–262 (2003).

    Article  CAS  Google Scholar 

  28. Todorov, I. T. et al. HsMCM2/BM28: a novel proliferation marker for human tumors and normal tissues. Lab. Invest. 78, 73–78 (1998).

    CAS  PubMed  Google Scholar 

  29. Scholzen, T. & Gerdes, J. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182, 311–322 (2000).

    Article  CAS  Google Scholar 

  30. MacCallum, D. E. & Hall, P. A. The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. J. Pathol. 190, 537–544 (2000).

    Article  CAS  Google Scholar 

  31. Baisch, H. & Gerdes, J. Simultaneous staining of exponentially growing versus plateau phase cells with the proliferation-associated antibody Ki-67 and propidium iodide: analysis by flow cytometry. Cell Tissue Kinet. 20, 387–391 (1987).

    CAS  PubMed  Google Scholar 

  32. Celis, J. E. & Celis, A. Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc. Natl Acad. Sci. USA 82, 3262–3266 (1985).

    Article  CAS  Google Scholar 

  33. Rowlands, D. C., Brown, H. E., Barber, P. C. & Jones, E. L. The effect of tissue fixation on immunostaining for proliferating cell nuclear antigen with the monoclonal antibody PC10. J. Pathol. 165, 356–357 (1991).

    Article  CAS  Google Scholar 

  34. Toschi, L. & Bravo, R. Changes in cyclin/proliferating cell nuclear antigen distribution during DNA repair synthesis. J. Cell Biol. 107, 1623–1628 (1988).

    Article  CAS  Google Scholar 

  35. Stoeber, K. et al. Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J. Natl Cancer Inst. 94, 1071–1079 (2002).

    Article  CAS  Google Scholar 

  36. Ohta, S. et al. Cdc6 expression as a marker of proliferative activity in brain tumors. Oncol. Rep. 8, 1063–1066 (2001).

    CAS  PubMed  Google Scholar 

  37. Gonzalez, M. A. et al. Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J. Clin. Oncol. 21, 4306–4313 (2003).

    Article  CAS  Google Scholar 

  38. Ramnath, N. et al. MCM2 is an independent predictor of survival in patients with non-small-cell lung cancer. J. Clin. Oncol. 19, 4259–4266 (2001).

    Article  CAS  Google Scholar 

  39. Hashimoto, K. et al. MCM2 and Ki-67 Expression in human lung adenocarcinoma: prognostic implications. Pathobiology 71, 193–200 (2004).

    Article  CAS  Google Scholar 

  40. Hunt, D. P. et al. Early recurrence of benign meningioma correlates with expression of mini-chromosome maintenance-2 protein. Br. J. Neurosurg. 16, 10–15 (2002).

    Article  CAS  Google Scholar 

  41. Wharton, S. B., Chan, K. K., Anderson, J. R., Stoeber, K. & Williams, G. H. Replicative Mcm2 protein as a novel proliferation marker in oligodendrogliomas and its relationship to Ki67 labelling index, histological grade and prognosis. Neuropathol. Appl. Neurobiol. 27, 305–313 (2001).

    Article  CAS  Google Scholar 

  42. Meng, M. V. et al. Minichromosome maintenance protein 2 expression in prostate: characterization and association with outcome after therapy for cancer. Clin. Cancer Res. 7, 2712–2718 (2001).

    CAS  PubMed  Google Scholar 

  43. Kato, H. et al. A new proliferation marker, minichromosome maintenance protein 2, is associated with tumor aggressiveness in esophageal squamous cell carcinoma. J. Surg. Oncol. 84, 24–30 (2003).

    Article  CAS  Google Scholar 

  44. Rodins, K., Cheale, M., Coleman, N. & Fox, S. B. Minichromosome maintenance protein 2 expression in normal kidney and renal cell carcinomas: relationship to tumor dormancy and potential clinical utility. Clin. Cancer Res. 8, 1075–1081 (2002).

    CAS  PubMed  Google Scholar 

  45. Kruger, S. et al. Prognostic value of MCM2 immunoreactivity in stage T1 transitional cell carcinoma of the bladder. Eur. Urol. 43, 138–145 (2003).

    Article  Google Scholar 

  46. Kodani, I. et al. Minichromosome maintenance 2 expression is correlated with mode of invasion and prognosis in oral squamous cell carcinomas. J. Oral Pathol. Med. 32, 468–474 (2003).

    Article  CAS  Google Scholar 

  47. Mukherjee, G. et al. Biologic factors and response to radiotherapy in carcinoma of the cervix. Int. J. Gynecol. Cancer 11, 187–193 (2001).

    Article  CAS  Google Scholar 

  48. Rhodes, D. R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA 101, 9309–9314 (2004).

    Article  CAS  Google Scholar 

  49. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  50. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  Google Scholar 

  51. Yu, K. et al. A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res. 64, 2962–2968 (2004).

    Article  CAS  Google Scholar 

  52. Neben, K. et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 64, 3103–3111 (2004).

    Article  CAS  Google Scholar 

  53. Rosenwald, A. et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3, 185–197 (2003).

    Article  CAS  Google Scholar 

  54. Mills, A. D., Coleman, N., Morris, L. S. & Laskey, R. A. Detection of S-phase cells in tissue sections by in situ DNA replication. Nature Cell Biol. 2, 244–245 (2000).

    Article  CAS  Google Scholar 

  55. Bielinsky, A. K. & Gerbi, S. A. Where it all starts: eukaryotic origins of DNA replication. J. Cell Sci. 114, 643–651 (2001).

    CAS  PubMed  Google Scholar 

  56. Wong, C. & Stearns, T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nature Cell Biol. 5, 539–544 (2003).

    Article  CAS  Google Scholar 

  57. Kennedy, B. K., Barbie, D. A., Classon, M., Dyson, N. & Harlow, E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14, 2855–2868 (2000).

    Article  CAS  Google Scholar 

  58. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    Article  CAS  Google Scholar 

  59. Dimitrova, D. S. & Berezney, R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051 (2002).

    Article  CAS  Google Scholar 

  60. Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997–1008 (2003).

    Article  CAS  Google Scholar 

  61. Arentson, E. et al. Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21, 1150–1158 (2002).

    Article  CAS  Google Scholar 

  62. Melixetian, M. et al. Loss of Geminin induces rereplication in the presence of functional p53. J. Cell Biol. 165, 473–482 (2004).

    Article  CAS  Google Scholar 

  63. Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol. Cell Biol. 24, 7140–7150 (2004).

    Article  CAS  Google Scholar 

  64. Yoshida, K. & Inoue, I. Regulation of Geminin and Cdt1 expression by E2F transcription factors. Oncogene 23, 3802–3812 (2004).

    Article  CAS  Google Scholar 

  65. Leone, G. et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12, 2120–2130 (1998).

    Article  CAS  Google Scholar 

  66. Yoshida, K., Oyaizu, N., Dutta, A. & Inoue, I. The destruction box of human Geminin is critical for proliferation and tumor growth in human colon cancer cells. Oncogene 23, 58–70 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Morris for helpful discussions and contributing the micrographs in Fig. 2 and L.K. Ferrigno for critical review of the manuscript. M.A.G. is supported by a Medical Research Council Clinical Research Training Fellowship and K.K.T. is supported by a Medical Research Council Pre-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Gonzalez or Nicholas Coleman.

Ethics declarations

Competing interests

N.C. and R.A.L. are entitled to a share of royalties received by Cancer Research Technology Ltd on sales of products related to the use of MCM detection in cancer diagnosis.

Related links

Related links

DATABASES

Entrez Gene

CCND1

CDC6

CDK1

CDK2

CDK4

CDK6

CDT1

geminin

INK4A

INK4B

INK4C

INK4D

KIP1

KIP2

MCM2

MCM4

MCM5

MCM6

WAF1

National Cancer Institute

bladder cancer

brain tumour

breast cancer

cervical cancer

non-small cell lung cancer

oesophageal cancer

oral squamous cell carcinoma

prostate cancer

renal cell cancer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, M., Tachibana, Ke., Laskey, R. et al. Control of DNA replication and its potential clinical exploitation. Nat Rev Cancer 5, 135–141 (2005). https://doi.org/10.1038/nrc1548

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing