Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mouse models of advanced spontaneous metastasis for experimental therapeutics

Abstract

An enduring problem in cancer research is the failure to reproduce highly encouraging preclinical therapeutic findings using transplanted or spontaneous primary tumours in mice in clinical trials of patients with advanced metastatic disease. There are several reasons for this, including the failure to model established, visceral metastatic disease. We therefore developed various models of aggressive multi-organ spontaneous metastasis after surgical resection of orthotopically transplanted human tumour xenografts. In this Opinion article we provide a personal perspective summarizing the prospect of their increased clinical relevance. This includes the reduced efficacy of certain targeted anticancer drugs, the late emergence of spontaneous brain metastases and the clinical trial results evaluating a highly effective therapeutic strategy previously tested using such models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The metastatic cascade.
Figure 2: The selection of metastatically aggressive subpopulations of tumour cells often requires rounds of in vivo selection.
Figure 3: Differential response of metastases and primary tumours to therapy.
Figure 4: Treatment of visceral metastatic disease can result in the appearance of metastases to the brain.

Similar content being viewed by others

References

  1. Wilmanns, C., Fan, D., O'Brian, C. A., Bucana, C. D. & Fidler, I. J. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int. J. Cancer 52, 98–104 (1992).

    Article  CAS  Google Scholar 

  2. Kerbel, R. S. What is the optimal rodent model for anti-tumor drug testing? Cancer Metastasis Rev. 17, 301–304 (1998).

    Article  Google Scholar 

  3. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived - but they can. be improved. Cancer Biol. Ther. 2, 108–113 (2003).

    Google Scholar 

  4. Peterson, J. K. & Houghton, P. J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40, 837–844 (2004).

    Article  CAS  Google Scholar 

  5. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  Google Scholar 

  6. Ottewell, P. D., Coleman, R. E. & Holen, I. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res. Treat. 96, 101–113 (2006).

    Article  CAS  Google Scholar 

  7. Talmadge, J. E., Singh, R. K., Fidler, I. J. & Raz, A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 170, 793–804 (2007).

    Article  CAS  Google Scholar 

  8. Brodie, S. G. et al. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514–7523 (2001).

    Article  CAS  Google Scholar 

  9. Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten± mice. Cancer Res. 60, 3605–3611 (2000).

    CAS  PubMed  Google Scholar 

  10. Gourley, C. et al. Increased incidence of visceral metastases in scottish patients with BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J. Clin. Oncol. 28, 2505–2511 (2010).

    Article  Google Scholar 

  11. Albiges, L. et al. Spectrum of breast cancer metastasis in BRCA1 mutation carriers: highly increased incidence of brain metastases. Ann. Oncol. 16, 1846–1847 (2005).

    Article  CAS  Google Scholar 

  12. Schmitz, M. et al. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int. J. Cancer 120, 1284–1292 (2007).

    Article  CAS  Google Scholar 

  13. Khanna, C. & Hunter, K. Modeling metastasis in vivo. Carcinogenesis 26, 513–523 (2005).

    Article  CAS  Google Scholar 

  14. Sharpless, N. E. & DePinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  15. Heyer, J., Kwong, L. N., Lowe, S. W. & Chin, L. Non-germline genetically engineered mouse models for translational cancer research. Nature Rev. Cancer 10, 470–480 (2010).

    Article  CAS  Google Scholar 

  16. Kim, I. S. & Baek, S. H. Mouse models for breast cancer metastasis. Biochem. Biophys. Res. Commun. 394, 443–447 (2010).

    Article  CAS  Google Scholar 

  17. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  Google Scholar 

  18. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  Google Scholar 

  19. Singh, M. et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nature Biotech. 28, 585–593 (2010).

    Article  CAS  Google Scholar 

  20. Francia, G. & Kerbel, R. S. Raising the bar for cancer therapy models. Nature Biotech. 28, 561–562 (2010).

    Article  CAS  Google Scholar 

  21. Van, D. T. Approximating a human cancer. Nature Med. 16, 976–977 (2010).

    Article  Google Scholar 

  22. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  Google Scholar 

  23. Morikawa, K., Walker, S. M., Jessup, J. M. & Fidler, I. J. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48, 1943–1948 (1988).

    CAS  PubMed  Google Scholar 

  24. Kubota, T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J. Cell. Biochem. 56, 4–8 (1994).

    Article  CAS  Google Scholar 

  25. Furukawa, T., Kubota, T., Watanabe, M., Kitajima, M. & Hoffman, R. M. A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res. 53, 3070–3072 (1993).

    CAS  PubMed  Google Scholar 

  26. Kiguchi, K. et al. A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin. Exp. Metastasis 16, 751–756 (1998).

    Article  CAS  Google Scholar 

  27. Price, J. E. & Zhang, R. D. Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev. 8, 285–297 (1990).

    Article  CAS  Google Scholar 

  28. Fidler, I. J. Models for spontaneous metastasis. Cancer Res. 66, 9787 (2006).

    Article  CAS  Google Scholar 

  29. Dawson, M. R., Duda, D. G., Fukumura, D. & Jain, R. K. VEGFR1-activity-independent metastasis formation. Nature 461, e4 (2009).

    Article  CAS  Google Scholar 

  30. Nangia-Makker, P. et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl Cancer Inst. 94, 1854–1862 (2002).

    Article  CAS  Google Scholar 

  31. Teicher, B. A. et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer 57, 920–925 (1994).

    Article  CAS  Google Scholar 

  32. Holden, S. A., Emi, Y., Kakeji, Y., Northey, D. & Teicher, B. A. Host distribution and response to antitumor alkylating agents of EMT-6 tumor cells from subcutaneous tumor implants. Cancer Chemother. Pharmacol. 40, 87–93 (1997).

    Article  CAS  Google Scholar 

  33. Barnett, S. C. & Eccles, S. A. Studies of mammary carcinoma metastasis in a mouse model system. II: lectin binding properties of cells in relation to the incidence and organ distribution of metastases. Clin. Exp. Metastasis 2, 297–310 (1984).

    Article  CAS  Google Scholar 

  34. Munoz, R. et al. Highly efficacious non-toxic treatment for advanced metastatic breast cancer using combination UFT-cyclophosphamide metronomic chemotherapy. Cancer Res. 66, 3386–3391 (2006).

    Article  CAS  Google Scholar 

  35. Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Development of a preclinical model of spontaneous human melanoma CNS metastasis. Cancer Res. 68, 4500–4505 (2008).

    Article  CAS  Google Scholar 

  36. Francia, G. et al. Long term progression and therapeutic response of visceral metastatic disease non-invasively monitored in mouse urine using β-hCG choriogonadotropin secreting tumor cell lines. Mol. Cancer Ther. 7, 3452–3459 (2008).

    Article  CAS  Google Scholar 

  37. Fidler, I. J. & Hart, I. R. Biological diversity in metastatic neoplasms: origins and implications. Science 217, 998–1003 (1982).

    Article  CAS  Google Scholar 

  38. Barnett, S. C. & Eccles, S. A. Studies of mammary carcinoma metastasis in a mouse model system. I: derivation and characterization of cells with different metastatic properties during tumour progression in vivo. Clin. Exp. Metastasis 2, 15–36 (1984).

    Article  CAS  Google Scholar 

  39. Shih, I. M. et al. Assessing tumors in living animals through measurement of urinary β-human chorionic gonadotropin. Nature Med. 6, 711–714 (2000).

    Article  CAS  Google Scholar 

  40. Hoffman, R. M. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin. Exp. Metastasis 26, 345–355 (2009).

    Article  CAS  Google Scholar 

  41. Sahai, E. Illuminating the metastatic process. Nature Rev. Cancer 7, 737–749 (2007).

    Article  CAS  Google Scholar 

  42. Kozlowski, J. M. et al. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 44, 3522–3529 (1984).

    CAS  PubMed  Google Scholar 

  43. Poste, G., Doll, J., Hart, I. R. & Fidler, I. J. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 40, 1636–1644 (1980).

    CAS  PubMed  Google Scholar 

  44. Kerbel, R. S., Man, M. S. & Dexter, D. A model of human cancer metastasis: extensive spontaneous and artificial metastasis of a human pigmented and derived variant sublines in nude mice. J. Natl Cancer Inst. 72, 93–108 (1984).

    Article  CAS  Google Scholar 

  45. Price, J. E., Polyzos, A., Zhang, R. D. & Daniels, L. M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50, 717–721 (1990).

    CAS  PubMed  Google Scholar 

  46. Francia, G. et al. Comparative impact of trastuzumab and cyclophosphamide on HER-2 positive human breast cancer xenografts. Clin. Cancer Res. 15, 6358–6366 (2009).

    Article  CAS  Google Scholar 

  47. du Manoir, J. M. et al. Strategies for delaying or treating in vivo acquired resistance to trastuzumab (Herceptin®) in human breast cancer xenografts. Clin. Cancer Res. 12, 904–916 (2006).

    Article  CAS  Google Scholar 

  48. Man, S. et al. Antitumor and anti-angiogenic effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. 62, 2731–2735 (2002).

    CAS  PubMed  Google Scholar 

  49. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  Google Scholar 

  50. Hudis, C. A. Trastuzumab-mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  Google Scholar 

  51. Kerbel, R. S. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312, 1171–1175 (2006).

    Article  CAS  Google Scholar 

  52. Burger, R. A. et al. Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): a Gynecologic Oncology Group study. J. Clin. Oncol. Abst. 28, LBA1 (2010).

    Article  Google Scholar 

  53. Man, S., Munoz, R. & Kerbel, R. S. On the development of models in mice of advanced visceral metastatic disease for anti-cancer drug testing. Cancer Metastasis Rev. 26, 737–747 (2007).

    Article  Google Scholar 

  54. Gril, B. et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl Cancer Inst. 100, 1092–1103 (2008).

    Article  CAS  Google Scholar 

  55. Warren, R. S., Yuan, H., Mati, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789–1797 (1995).

    Article  CAS  Google Scholar 

  56. Vantyghem, S. A. et al. Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res. 65, 3396–3403 (2005).

    Article  CAS  Google Scholar 

  57. McCulloch, P. & George, W. D. Warfarin inhibits metastasis of Mtln3 rat mammary carcinoma without affecting primary tumour growth. Br. J. Cancer 59, 179–183 (1989).

    Article  CAS  Google Scholar 

  58. Dellapasqua, S. et al. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer: clinical and biological activity. J. Clin. Oncol. 26, 4899–4905 (2008).

    Article  CAS  Google Scholar 

  59. Cruz-Munoz, W., Man, S. & Kerbel, R. S. Effective treatment of advanced human melanoma metastasis in immunodeficient mice using combination metronomic chemotherapy regimens. Clin. Cancer Res. 15, 4867–4874 (2009).

    Article  CAS  Google Scholar 

  60. Lawson, D. H. Choices in adjuvant therapy of melanoma. Cancer Control 12, 236–241 (2005).

    Article  Google Scholar 

  61. Lin, N. U. & Winer, E. P. Brain metastases: the HER2 paradigm. Clin. Cancer Res. 13, 1648–1655 (2007).

    Article  CAS  Google Scholar 

  62. Steeg, P. S. et al. Preclinical drug development must consider the impact on metastasis. Clin. Cancer Res. 15, 4529–4530 (2009).

    Article  Google Scholar 

  63. Palmieri, D. et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res. 15, 6148–6157 (2009).

    Article  CAS  Google Scholar 

  64. Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009).

    Article  Google Scholar 

  65. Minn., A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  CAS  Google Scholar 

  66. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  Google Scholar 

  67. Welch, D. R. Technical considerations for studying cancer metastasis in vivo. Clin. Exp. Metastasis 15, 272–306 (1997).

    Article  CAS  Google Scholar 

  68. Steeg, P. S. & Theodorescu, D. Metastasis: a therapeutic target for cancer. Nature Clin. Pract. Oncol. 5, 206–219 (2008).

    Article  CAS  Google Scholar 

  69. Dunn, L. K. et al. Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS ONE 4, e6896 (2009).

    Article  Google Scholar 

  70. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  Google Scholar 

  71. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  Google Scholar 

  72. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  Google Scholar 

  73. Price, J. E. Analyzing the metastatic phenotype. J. Cell. Biochem. 56, 16–22 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Cheng for her excellent secretarial assistance; L. Ellis, I. Hart, I. J. Fidler, C. Hackl and U. Emmenegger for their comments, past and present. R.S.K.'s metastasis therapy studies are supported by grants from the US National Institutes of Health (NIH)(CA-41233), Canadian Cancer Society Research Institute (CCSRI), Canadian Institutes of Health Research (CIHR) and the Ontario Institute for Cancer Research (OICR), as well as past or present sponsored research agreements with Taiho Pharmaceuticals, Tokyo, Japan, ImClone Systems, New York, GSK, Philadelphia and Pfizer, La Jolla, USA. R.S.K. holds a Tier I Canada Research Chair in Tumour Biology, Angiogenesis and Antiangiogenic Therapy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giulio Francia or Robert S. Kerbel.

Ethics declarations

Competing interests

R.S.K. is a consultant at Taiho Pharmaceuticals, Japan, and a member of the Scientific Advisory Board at MetronomX, USA.

Related links

Related links

FURTHER INFORMATION

Robert S. Kerbel's homepage

Clinicaltrails.gov Identifier NCT01131195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francia, G., Cruz-Munoz, W., Man, S. et al. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11, 135–141 (2011). https://doi.org/10.1038/nrc3001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3001

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer