Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PAK signalling during the development and progression of cancer

Key Points

  • There are two subgroups of p21-activated kinases (PAKs), which comprise three members each: group I (PAK1–3) and group II (PAK 4–6). New genetic models of PAK in mice and fish have shown the unique functions of the six PAK isoforms.

  • PAK expression and activity, in particular those of PAK1 and PAK4, are often upregulated in human tumours. Tumour cells with upregulated PAK tend to become dependent on PAK signalling.

  • In many cell types, PAKs positively regulate at least three key proliferative signalling pathways: ERK, AKT and WNT.

  • In addition to their roles in proliferation, PAKs also have important roles in promoting cell survival, invasion and metastasis, and angiogenesis.

  • Several potent and specific small-molecule inhibitors of all PAKs or of group I or II PAKs are in advanced stages of preclinical development. However, such agents will need to be used with caution, as PAK function may be required for maintaining vascular integrity.

  • Inhibitors that target PAKs may be useful in cancers that have amplified PAK alleles, as well as in cancers that depend on PAK for activation of downstream signalling pathways, such as ERBB2-amplified breast cancer and colon cancers that are driven by mutations in the WNT pathway.

Abstract

p21-activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Validated PAK substrates and their roles in the hallmarks of cancer.
Figure 2: The role of PAK in growth signal autonomy and cell survival.
Figure 3: PAK signalling in angiogenesis and modulation of vascular permeability.
Figure 4: Specificity of PAK inhibitors.

Similar content being viewed by others

References

  1. Dart, A. E. & Wells, C. M. P21-activated kinase 4—not just one of the PAK. Eur. J. Cell Biol. 92, 129–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ye, D. Z. & Field, J. PAK signaling in cancer. Cell. Logist. 2, 105–116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whale, A. D., Dart, A., Holt, M., Jones, G. E. & Wells, C. M. PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene 32, 2114–2120 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Parsons, D. W. et al. Colorectal cancer: mutations in a signalling pathway. Nature 436, 792 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fawdar, S. et al. Targeted genetic dependency screen facilitates identification of actionable mutations in FGFR4, MAP3K9, and PAK5 in lung cancer. Proc. Natl Acad. Sci. USA (2013). This paper gives an analysis of potential gain-of-function mutations in PAK5 in lung cancer.

  7. Shrestha, Y. et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 31, 3397–3408 (2012). In this paper, an unbiased expression screen using a kinome library showed that PAK1 is a potent oncogene in breast epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  8. Ong, C. C. et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc. Natl Acad. Sci. USA 108, 7177–7182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddy, S. D., Ohshiro, K., Rayala, S. K. & Kumar, R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res. 68, 8195–8200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, X. et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol. Cancer Res. 11, 240–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y. et al. Involvement of microRNA-224 in cell proliferation, migration, invasion, and anti-apoptosis in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 28, 565–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z. et al. MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells. Biochem. Biophys. Res. Commun. 427, 444–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Fiedler, J. et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124, 720–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Holderness Parker, N., Donninger, H., Birrer, M. J. & Leaner, V. D. p21-Activated Kinase 3 (PAK3) Is an AP-1 Regulated Gene Contributing to Actin Organisation and Migration of Transformed Fibroblasts. PLoS ONE 8, e66892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arias-Romero, L. E. and Chernoff, J. p21-activated kinases in Erbb2-positive breast cancer: A new therapeutic target? Small GTPases 1, 124–128 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang, Z., Traugh, J. A. & Bishop, J. M. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol. Cell. Biol. 24, 1582–1594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jakobi, R., Chen, C. J., Tuazon, P. T. & Traugh, J. A. Molecular cloning & sequencing of the cytostatic G. protein-activated protein kinase PAK I. J. Biol. Chem. 271, 6206–6211 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, Z., Ling, J. & Traugh, J. A. Localization of p21-activated protein kinase gamma-PAK/Pak2 in the endoplasmic reticulum is required for induction of cytostasis. J. Biol. Chem. 278, 13101–13109 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Balasenthil, S. et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Arias-Romero, L. E. & Chernoff, J. A tale of two Paks. Biol. Cell 100, 97–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Z. et al. p21-Activated Kinase 1 (PAK1) Can Promote ERK Activation in a Kinase-independent Manner. J. Biol. Chem. 288, 20093–20099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Z. et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 29, 3362–3373 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi, M., Onishi, K., Kikuchi, C. & Gotoh, Y. Scaffolding function of PAK in the PDK1-Akt pathway. Nature Cell Biol. 10, 1356–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Chow, H. Y. et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 72, 5966–5975 (2012). This is the first mouse model study showing that PAK1 function is required for KRAS-mediated tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tabusa, H., Brooks, T. & Massey, A. J. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol. Cancer Res. 11, 109–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Arias-Romero, L. E., Villamar-Cruz, O., Huang, M., Hoeflich, K. P. & Chernoff, J. Pak1 Kinase Links ErbB2 to β-Catenin in Transformation of Breast Epithelial Cells. Cancer Res. 73, 3671–3682 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, H. et al. P-21 activated kinase 1 knockdown inhibits beta-catenin signalling and blocks colorectal cancer growth. Cancer Lett. 317, 65–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. He, H., Shulkes, A. & Baldwin, G. S. PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim. Biophys. Acta 1783, 1943–1954 (2008). This is the first work to link PAK to WNT signalling.

    Article  CAS  PubMed  Google Scholar 

  29. Wong, L. E., Reynolds, A. B. & Dissanayaka, N. T. & Minden, A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J. Cell Biochem. 110, 1244–1254 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Menzel, N. et al. The Drosophila p21-activated kinase Mbt modulates DE-cadherin-mediated cell adhesion by phosphorylation of Armadillo. Biochem. J. 416, 231–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L. & Manser, E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol. Cell 20, 237–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Maroto, B., Ye, M. B., von Lohneysen, K., Schnelzer, A. & Knaus, U. G. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27, 4900–4908 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, R. A., Mazumdar, A., Vadlamudi, R. K. & Kumar, R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-α and promotes hyperplasia in mammary epithelium. EMBO J. 21, 5437–5447 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schrantz, N. et al. Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J. Biol. Chem. 279, 1922–1931 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hirokawa, Y., Arnold, M., Nakajima, H., Zalcberg, J. & Maruta, H. Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol. Ther. 4, 956–960 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Nekrasova, T. & Minden, A. PAK4 is required for regulation of the cell-cycle regulatory protein p21, and for control of cell-cycle progression. J. Cell. Biochem. 112, 1795–1806 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Bompard, G. et al. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 32, 910–919 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Bompard, G. et al. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J. Cell Biol. 190, 807–822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schurmann, A. et al. p21-activated kinase 1 (PAK1) phosphorylates the death agonist Bad and protects cells from apoptosis. Mol. Cell. Biol. 20, 453–461 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tran, N. H. & Frost, J. A. Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J. Biol. Chem. 278, 11221–11226 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, X., Carr, H. S., Dan, I., Ruvolo, P. P. & Frost, J. A. p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J. Cell Biochem. 105, 167–175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lightcap, C. M. et al. Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development. PloS one 4, e6025 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vadlamudi, R. K. et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5, 575–585 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Friedland, J. C. et al. α6β4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-κB-dependent resistance to apoptosis in 3D mammary acini. J. Cell Sci. 120, 3700–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Dadke, D., Fryer, B. H., Golemis, E. A. & Field, J. Activation of p21-activated kinase 1-nuclear factor κB signaling by Kaposi's sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res. 63, 8837–8847 (2003).

    CAS  PubMed  Google Scholar 

  46. Orr, A. W., Hahn, C., Blackman, B. R. & Schwartz, M. A. p21-activated kinase signaling regulates oxidant-dependent NF-κB activation by flow. Circul. Res. 103, 671–679 (2008).

    Article  CAS  Google Scholar 

  47. Li, X. et al. Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J. Biol. Chem. 286, 22291–22299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Orton, K. C. et al. Phosphorylation of Mnk1 by caspase-activated Pak2/γ-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J. Biol. Chem. 279, 38649–38657 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Marlin, J. W., Eaton, A., Montano, G. T., Chang, Y. W. & Jakobi, R. Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 11, 286–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gnesutta, N. & Minden, A. Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol. Cell. Biol. 23, 7838–7848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nayal, A. et al. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173, 587–589 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, M. C., West, K. A. & Turner, C. E. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol. Biol. Cell 13, 1550–1565 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Premont, R. T. et al. The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell Signal 16, 1001–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Adam, L., Vadlamudi, R., Mandal, M., Chernoff, J. & Kumar, R. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275, 12041–12050 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Coniglio, S. J., Zavarella, S. & Symons, M. H. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol. Cell. Biol. 28, 4162–4172 (2008). This is the first paper to delineate signalling differences among group I PAKs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kosoff, R., Chow, H. Y., Radu, M. & Chernoff, J. Pak2 kinase restrains mast cell FcepsilonRI receptor signaling through modulation of Rho protein guanine nucleotide exchange factor (GEF) activity. J. Biol. Chem. 288, 974–983 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Allen, J. D. et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 113, 2695–2705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sipes, N. S. et al. Cdc42 regulates extracellular matrix remodeling in three dimensions. J. Biol. Chem. 286, 36469–36477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rider, L., Oladimeji, P. & Diakonova, M. PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin & three-dimensional collagen, IV. Mol. Endocrinol. 27, 1048–1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goc, A., Abdalla, M., Al-Azayzih, A. & Somanath, P. R. Rac1 activation driven by 14-3-3zeta dimerization promotes prostate cancer cell-matrix interactions, motility and transendothelial migration. PLoS ONE 7, e40594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, X. X. et al. PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell. Tumour Biol. (2013).

  64. Kesanakurti, D., Chetty, C., Rajasekhar Maddirela, D., Gujrati, M. & Rao, J. S. Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis. 3, e445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, L. et al. Tumor necrosis factor-α induced expression of matrix metalloproteinase-9 through p21-activated kinase-1. BMC Immunol. 10, 15 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fu, D. et al. Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Rheumatol. (Oxford) 51, 1170–1180 (2012).

    Article  CAS  Google Scholar 

  67. Goc, A. et al. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor beta expression and enhanced matrix metalloproteinase 9 secretion. J. Biol. Chem. 288, 3025–3035 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Al-Azayzih, A., Gao, F., Goc, A. & Somanath, P. R. TGFbeta1 induces apoptosis in invasive prostate cancer and bladder cancer cells via Akt-independent, 38 MAPK and JNK/SAPK-mediated activation of caspases. Biochem. Biophys. Res. Commun. 427, 165–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, M., Siedow, M., Saia, G. & Chakravarti, A. Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 70, 807–816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Galan Moya, E. M., Le Guelte, A. & Gavard, J. PAKing up to the endothelium. Cell Signal 21, 1727–1737 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kelly, M. L., Astsaturov, A. & Chernoff, J. Role of p21-activated kinases in cardiovascular development and function. Cell. Mol. Life Sci. (2013).

  72. Hu, G. D. et al. The generation of the endothelial specific cdc42-deficient mice and the effect of cdc42 deletion on the angiogenesis and embryonic development. Chin. Med. J. (Engl.) 124, 4155–4159 (2011).

    CAS  Google Scholar 

  73. Srinivasan, R. et al. Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS ONE 4, e8283 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tan, W. et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Hofmann, C., Shepelev, M. & Chernoff, J. The genetics of Pak. J. Cell Sci. 117, 4343–4354 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Qu, J. et al. PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol. Cell. Biol. 23, 7122–7133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bagheri-Yarmand, R., Vadlamudi, R. K., Wang, R. A., Mendelsohn, J. & Kumar, R. Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-β1-mediated angiogenesis. J. Biol. Chem. 275, 39451–39457 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147, 831–844 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Del Valle-Perez, B. et al. Filamin B plays a key role in vascular endothelial growth factor-induced endothelial cell motility through its interaction with Rac-1 and Vav-2. J. Biol. Chem. 285, 10748–10760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Master, Z. et al. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J. 20, 5919–5928 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G. & Cheresh, D. A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Koh, W. et al. Formation of endothelial lumens requires a coordinated PKCepsilon- Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J. Cell Sci. 122, 1812–1822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kiosses, W. B. et al. A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ. Res. 90, 697–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Li, Z. et al. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J. Biol. Chem. 285, 23699–23710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yurdagul, A. Jr et al. Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Mol. Biol. Cell 24, 398–408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wojciak-Stothard, B., Tsang, L. Y., Paleolog, E., Hall, S. M. & Haworth, S. G. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1173–1182 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, J. et al. A βPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc. Natl Acad. Sci. USA 104, 13990–13995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stockton, R. et al. Induction of vascular permeability: beta PIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK. Mol. Biol. Cell 18, 2346–2355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stockton, R. A., Schaefer, E. & Schwartz, M. A. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279, 46621–46630 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol. 8, 1223–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Guilluy, C. et al. Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood 118, 5344–5354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nheu, T. V. et al. The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Cancer J. 8, 328–336 (2002).

    Article  PubMed  Google Scholar 

  93. Porchia, L. M. et al. 2-amino-N{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase. Mol. Pharmacol. 72, 1124–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Murray, B. W. et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc. Natl Acad. Sci. USA 107, 9446–9451 (2010). This is a description of the first small-molecule PAK inhibitor to be used in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pitts, T. M. et al. Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Front. Pharmacol. 4, 35 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ong, C. C. et al. P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. J. Natl Cancer Inst. 105, 606–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Bradshaw-Pierce, E. L. et al. Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers Pharmacol. 4, 22 (2013).

    Article  CAS  Google Scholar 

  98. Licciulli, S. et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of NF2-associated schwannomas. J. Biol. Chem. (2013).

  99. Maksimoska, J. et al. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J. Am. Chem. Soc. 130, 15764–15765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deacon, S. W. et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 15, 322–331 (2008). This paper describes the first allosteric PAK inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Viaud, J. & Peterson, J. R. An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol. Cancer Ther. 8, 2559–2565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thullberg, M., Gad, A., Beeser, A., Chernoff, J. & Stromblad, S. The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity. Oncogene 26, 1820–1828 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Say, E. et al. A functional requirement for PAK1 binding to the KH(2) domain of the fragile X protein-related FXR1. Mol. Cell 38, 236–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Davidovic, L. et al. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genet. 9, e1003367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hashimoto, H., Sudo, T., Maruta, H. & Nishimura, R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov. Ther. 4, 1–4 (2010).

    CAS  PubMed  Google Scholar 

  106. Orr, A. W. et al. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J. Cell Biol. 176, 719–727 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De la Mota-Peynado, A., Chernoff, J. & Beeser, A. Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J. Biol Chem. 286, 13603–13611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Radu, M. et al. ArhGAP15, a Rac-Specific GTPase Activating Protein, Plays a Dual Role in Inhibiting Small GTPase Signaling. J. Biol. Chem. (2013).

  109. Strochlic, T. I. et al. Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proc. Natl Acad. Sci. USA 109, 4116–4121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zanivan, S. et al. In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Rep. 3, 552–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Radu, M. & Chernoff, J. An in vivo assay to test blood vessel permeability. J. Vis. Exp. 73, e50062 (2013).

    Google Scholar 

  112. Dorrance, A. M. et al. The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood 121, 2474–2482 (2013). This work shows a requirement for PAK2 function in haematopoietic stem cell engraftment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Pirruccello, M. et al. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J. Mol. Biol. 361, 312–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Buchwald, G. et al. Conformational switch and role of phosphorylation in PAK activation. Mol. Cell. Biol. 21, 5179–5189 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Strochlic, T. I., Viaud, J., Rennefahrt, U. E., Anastassiadis, T. & Peterson, J. R. Phosphoinositides are essential coactivators for p21-activated kinase 1. Mol. Cell 40, 493–500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Banerjee, M., Worth, D., Prowse, D. M. & Nikolic, M. Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr. Biol. 12, 1233–1239 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Thiel, D. et al. Cell Cycle-Regulated Phosphorylation of p21-Activated Kinase 1. Curr. Biol. 12, 1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Bokoch, G. M. et al. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J. Biol. Chem. 273, 8137–8144 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. King, C. C. et al. p21-activated kinase-1 (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 274 (2000).

  121. Howe, A. K. & Juliano, R. L. Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nature Cell Biol. 2, 593–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Shin, Y. J., Kim, Y. B. & Kim, J. H. Protein kinase CK2 phosphorylates and activates p21-activated kinase 1 (PAK1). Mol. Biol. Cell (2013).

  123. Zhou, G. L. et al. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell. Biol. 23, 8058–8069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hammer, A. et al. Tyrosyl phosphorylated PAK1 regulates breast cancer cell motility in response to prolactin through filamin A. Mol. Endocrinol. 27, 455–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fryer, B. H. et al. cGMP-dependent protein kinase phosphorylates p21-activated kinase (Pak) 1, inhibiting Pak/Nck binding and stimulating Pak/vasodilator-stimulated phosphoprotein association. J. Biol. Chem. 281, 11487–11495 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Baskaran, Y., Ng, Y. W., Selamat, W., Ling, F. T. & Manser, E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep. 13, 653–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ching, Y. P., Leong, V. Y., Wong, C. M. & Kung, H. F. Identification of an autoinhibitory domain of p21-activated protein kinase 5. J. Biol. Chem. 238, 33621–33624 (2003).

    Article  CAS  Google Scholar 

  128. Abo, A. et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 17, 6527–6540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wallace, S. W., Durgan, J., Jin, D. & Hall, A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol. Biol. Cell 21, 2996–3006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ha, B. H. et al. Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc. Natl Acad. Sci. USA 109, 16107–16112 (2012). References 126 and 130 describe alternative models regarding how the activation of group II PAKs differs from that of group I PAKs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brown, L. A. et al. Amplification of 11q13 in ovarian carcinoma. Genes Chromosom. Cancer 47, 481–489 (2008).

    CAS  Google Scholar 

  132. Lundgren, K., Holm, K., Nordenskjold, B., Borg, A. & Landberg, G. Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res. 10, R81 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schraml, P. et al. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am. J. Pathol. 163, 985–992 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Inazawa, J., Inoue, J. & Imoto, I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci. 95, 559–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Begum, A. et al. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral squamous-cell carcinoma. Cancer Sci. 100, 1908–1916 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Mahlamaki, E. H. et al. High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 6, 432–439 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Davis, S. J. et al. Functional analysis of genes in regions commonly amplified in high-grade serous and endometrioid ovarian cancer. Clin. Cancer Res. 19, 1411–1421 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Chen, S. et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol. Ther. 7, 1793–1802 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Ahn, H. K. et al. P21-activated kinase 4 overexpression in metastatic gastric cancer patients. Transl. Oncol. 4, 345–349 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kimmelman, A. C. et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc. Natl Acad. Sci. USA 105, 19372–19377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, Y. et al. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene 29, 5883–5894 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smith, S. D., Jaffer, Z. M., Chernoff, J. & Ridley, A. J. PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J. Cell Sci. 121, 3729–3736 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, W. et al. Pak1 as a novel therapeutic target for antihypertrophic treatment in the heart. Circulation 124, 2702–2715 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McDaniel, A. S. et al. Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood 112, 4646–4654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meng, J., Meng, Y., Hanna, A., Janus, C. & Jia, Z. Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang, W. et al. p21-Activated kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol. Cell. Biol. 31, 388–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Hayashi, M. L. et al. Altered Cortical Synaptic Morphology and Impaired Memory Consolidation in Forebrain- Specific Dominant-Negative PAK Transgenic Mice. Neuron 42, 773–787 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Hayashi, M. L. et al. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc. Natl Acad. Sci. USA 104, 11489–11494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, X. & Minden, A. Targeted disruption of the gene for the PAK5 kinase in mice. Mol. Cell. Biol. 23, 7134–7142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nekrasova, T., Jobes, M. L., Ting, J. H., Wagner, G. C. & Minden, A. Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev. Biol. 322, 95–108 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to J.C. from the US Department of Defence (W81XWH-06-1-0213) and the US National Institutes of Health (R01 CA58836, R01 CA098830, and R01 CA142928), and to the Fox Chase Cancer Center, Philadelphia, Pennsylvania (P30 CA006927), as well as by an appropriation from the state of Pennsylvania, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Chernoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Cyclin D1

A cyclin that, in partnership with cyclin-dependent kinases, is a key protein in progression through the G1 phase of the cell cycle. The gene encoding this protein (CCND1) is frequently co-amplified with the p21-activated kinase 1 (PAK1) gene in human cancers.

Guanine nucleotide exchange factor

(GEF). A protein that promotes the exchange of GDP for GTP on a GTPase, thereby facilitating its activation.

Kaposi's sarcoma-associated herpesvirus

The human herpesvirus that causes Kaposi's sarcoma.

Nuclear blebbing

Vesicular outpocketing of the nuclear membrane that is a hallmark of apoptosis.

GTPase-activating proteins

(GAPs). Proteins that accelerate the hydrolysis of GTP to GDP, which leads to an increase in the proportion of GDP-bound GTPase molecules and a consequent reduction in their activity.

Guanine nucleotide dissociation inhibitors

(GDIs). Enzymes that sequester GDP-bound small GTPases in the cytoplasm.

Drug efflux

The ability to actively pump out certain small-molecule inhibitors from cells.

TAT peptide

A cell-penetrating peptide that is derived from the HIV TAT protein, which, when fused to a peptide of interest, allows the fusion peptide to penetrate cell membranes and therefore enter cells.

Protein microarray screens

Recombinant proteins that are arrayed on a surface such as a glass slide and that can be assessed for phosphorylation that follows incubation with a protein kinase and ATP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radu, M., Semenova, G., Kosoff, R. et al. PAK signalling during the development and progression of cancer. Nat Rev Cancer 14, 13–25 (2014). https://doi.org/10.1038/nrc3645

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3645

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer