Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Idiosyncratic drug hepatotoxicity

Key Points

  • Idiosyncratic drug hepatotoxicity is the main cause of compound failure in Phase II drug development and post-market drug withdrawals, label changes and use restrictions.

  • The hallmark of idiosyncratic drug reactions is their occurrence in a unique, small proportion of individuals exposed to a drug, and much effort is focused on understanding what accounts for the uniqueness of an individual affected.

  • Idiosyncrasy can be allergic or non-allergic depending on the presence of clinical features such as fever, rash, eosinophilia and other symptoms related to the adaptive immune system. Tools to diagnose allergic idiosyncratic hepatotoxicity are lacking but lymphocyte-stimulation tests show promise.

  • Common to both types of idiosyncratic drug reaction is the occurrence of background mild liver injury, leading to the 'danger hypothesis', which suggests that a transient, mild liver injury might progress to severe drug-induced liver injury depending on genetic and environmental factors in concert with adaptive mechanisms such as inflammation and cell death.

  • Measurement of serum alanine transferase is a sensitive indicator of liver function used in clinical trials and could be extended to monitoring liver toxicity for drugs on the market. However, this approach suffers from poor compliance, lack of proven efficacy and the possibility of withdrawing beneficial drugs from patients at low or no risk of toxicity.

  • More knowledge of the clinical signatures of idiosyncratic drug reactions could help to predict hepatotoxicity in the absence of appropriate animal models, but is hindered by a lack of knowledge about the mechanisms of toxicity and the extent to which toxicity is drug-specific.

  • The mechanism of hepatotoxicity of acetaminophen (paracetamol) in animal models and humans is well established and could be extrapolated to provide insights into idiosyncratic toxicity in humans, particularly the role of the innate immune system and cell-death pathways.

  • Progress in understanding the causes of drug-induced idiosyncratic liver toxicity will require identification of specific determinants both in drug-metabolism pathways and in pathways involved in cell repair, regeneration and adaptation.

Abstract

The occurrence of idiosyncratic drug hepatotoxicity is a major problem in all phases of clinical drug development and the most frequent cause of post-marketing warnings and withdrawals. This review examines the clinical signatures of this problem, signals predictive of its occurrence (particularly of more frequent, reversible, low-grade injury) and the role of monitoring in prevention by examining several recent examples (for example, troglitazone). In addition, the failure of preclinical toxicology to predict idiosyncratic reactions, and what can be done to improve this problem, is discussed. Finally, our current understanding of the pathophysiology of experimental drug hepatotoxicity is examined, focusing on acetaminophen, particularly with respect to the role of the innate immune system and control of cell-death pathways, which might provide targets for exploration and identification of risk factors and mechanisms in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The danger hypothesis for immune-mediated idiosyncratic hepatotoxicity.
Figure 2: Current concepts of experimental acetaminophen (APAP) hepatotoxicity.
Figure 3: Drug-specific and common pathways of idiosyncratic drug hepatotoxicity.

Similar content being viewed by others

References

  1. Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Int. Med. 137, 947–954 (2002).

    PubMed  Google Scholar 

  2. Kaplowitz, N. Drug-induced liver disorders: implications for drug development and regulation. Drug Saf. 24, 483–490 (2001).

    CAS  PubMed  Google Scholar 

  3. Obermayer-Straub, P. & Manns, M. P. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 125–149 (Marcel Dekker, New York, 2003).

    Google Scholar 

  4. Maria, V. A. & Victorino, R. M. Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug-induced liver injury. Gut 41, 534–540 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maria, V. A. & Victorino, R. M. Immunological investigation in hepatic drug reactions. Clin. Exp. Allergy 28 (Suppl. 4), 71–77 (1998).

    CAS  PubMed  Google Scholar 

  6. Gunawan, B. & Kaplowitz, N. Clinical perspectives in xenobiotic hepatotoxicity. Drug Metab. Rev. 36, 301–312 (2004).

    CAS  PubMed  Google Scholar 

  7. Seguin, B. & Uetrecht, J. The danger hypothesis applied to idiosyncratic drug reactions. Curr. Opin. Allergy Clin. Immunol. 3, 235–242 (2003).

    PubMed  Google Scholar 

  8. Touloukian, J. & Kaplowitz, N. Halothane-induced hepatic disease. Semin. Liver Dis. 1, 134–142 (1981).

    CAS  PubMed  Google Scholar 

  9. Lewis, J. H. et al. Amiodarone hepatotoxicity: prevalence and clinicopathologic correlations among 104 patients. Hepatology 9, 679–685 (1989).

    CAS  PubMed  Google Scholar 

  10. Graham, D. J., Green, L., Senior, J. R. & Nourjah, P. Troglitazone-induced liver failure: a case study. Am. J. Med. 114, 299–306 (2003).

    PubMed  Google Scholar 

  11. Tolman, K. G. Defining patient risks from expanded preventive therapies. Am. J. Cardiol. 85, 15E–19E (2000).

    CAS  PubMed  Google Scholar 

  12. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  13. Njoku, D. B. et al. Autoantibodies associated with volatile anesthetic hepatitis found in the sera of a large cohort of pediatric anesthesiologists. Anesth. Analg. 94, 243–249 (2002).

    PubMed  Google Scholar 

  14. Levy, M. Role of viral infections in the induction of adverse drug reactions. Drug Saf. 16, 1–8 (1997).

    CAS  PubMed  Google Scholar 

  15. Ozick, L. A. et al. Hepatotoxicity from isoniazid and rifampin in inner-city AIDS patients. Am. J. Gastroenterol. 90, 1978–1980 (1995).

    CAS  PubMed  Google Scholar 

  16. Wong, W. -M. et al. Antituberculous drug-related liver dysfunction in chronic hepatitis B infection. Hepatology 31, 201–206 (2000).

    CAS  PubMed  Google Scholar 

  17. Ungo, J. R. et al. Antituberculous drug-induced hepatotoxicity: the role of hepatitis C virus and the human immunodeficiency virus. Am. J. Respir. Crit. Care Med. 157, 1871–1876 (1998).

    CAS  PubMed  Google Scholar 

  18. Schwartz, G. G. et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes. JAMA 285, 1711–1718 (2001).

    CAS  PubMed  Google Scholar 

  19. Kornbrust, D. J. et al. Toxicity of the HMG-coenzyme A reductase inhibitor, lovastatin, to rabbits. J. Pharmacol. Exp. Ther. 248, 498–505 (1989).

    CAS  PubMed  Google Scholar 

  20. Horsmans, Y., Desager, J. P. & Harvengt, C. Biochemical changes and morphological alterations of the liver in guinea-pigs after administration of simvastatin (HMG CoA reductase-inhibitor). Pharmacol. Toxicol. 67, 336–339 (1990).

    CAS  PubMed  Google Scholar 

  21. Senior, J. R. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 739–754 (Marcel Dekker, New York, 2003).

    Google Scholar 

  22. Zimmerman, H. J. in Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver (2nd edn) (ed. Zimmerman, H.) 433 (Lippincott, Philadelphia, 1999)

    Google Scholar 

  23. Chojkier, M. Troglitazone and liver injury: in search of answers. Hepatology 41, 237–246 (2005).

    CAS  PubMed  Google Scholar 

  24. Menon, K., Angulo, P. & Lindor, K. D. Severe cholestatic hepatitis from troglitazone in a patient with nonalcoholic steatohepatitis and diabetes mellitus. Am. J. Gastroenterol. 96, 1631–1634 (2001).

    PubMed  Google Scholar 

  25. Garcia-Rodriguez, L. A., Stricker, B. H. & Zimmerman, H. J. Risk of acute liver injury, associated with the combination of amoxicillin and clavulanic acid. Arch. Int. Med. 156, 1327–1332 (1996).

    CAS  Google Scholar 

  26. Stieger, B. et al. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118, 422–430 (2000).

    CAS  PubMed  Google Scholar 

  27. Iverson, S. L. & Uetrecht, J. P. Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chem. Res. Toxicol. 14, 175–181 (2001).

    CAS  PubMed  Google Scholar 

  28. Lakehal, F. et al. Indirect cytotoxicity of flucoxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem. Res. Toxicol. 14, 694–701 (2001).

    CAS  PubMed  Google Scholar 

  29. Dietrich, C. G., Ottenhoff, R., deWaart, D. R. & Oude Elferink, R. P J. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology 167, 73–81 (2001).

    CAS  PubMed  Google Scholar 

  30. Derby, L. E., Jick, H., Henry, D. A. & Dean, A. D. Erythromycin-associated cholestatic hepatitis. Med. J. Aust. 158, 600–602 (1993).

    CAS  PubMed  Google Scholar 

  31. Selim, K. & Kaplowitz, N. Hepatotoxicity of psychotropic drugs. Hepatology 29, 1347–1351 (1999).

    CAS  PubMed  Google Scholar 

  32. Andrade, R. J. et al. HLA Class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology 39, 1603–1612 (2004).

    CAS  PubMed  Google Scholar 

  33. Watkins, P. B. & Whitcomb, R. W. Hepatic dysfunction associated with troglitazone. N. Eng. J. Med. 338, 916–917 (1998).

    CAS  Google Scholar 

  34. Watkins, P. B. et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA 271, 992–998 (1994).

    CAS  PubMed  Google Scholar 

  35. Blackard, W. G., Sood, G. K., Cowe, D. R. & Fallon, M. B. Tacrine: a cause of fatal hepatotoxicity? J. Clin. Gastroenterol. 26, 57–59 (1998).

    PubMed  Google Scholar 

  36. Lee, W. M. et al. Hepatic findings in long-term clinical trials of ximelagatran. Drug Saf. 28, 351–370 (2005).

    CAS  PubMed  Google Scholar 

  37. Snider, D. E. & Caras, G. J. Isoniazid-associated hepatitis deaths: a review of available information. Am. Rev. Respir. Dis. 145, 494–497 (1992).

    PubMed  Google Scholar 

  38. vanHest, R. et al. Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin. Infect. Dis. 39, 488–496 (2004).

    CAS  Google Scholar 

  39. Willy, M. E. et al. A study of compliance with FDA recommendations for pemoline (Cylert). J. Am. Acad. Child Adolesc. Psychiatry 41, 785–790 (2002).

    PubMed  Google Scholar 

  40. Graham, D. J. et al. Liver enzyme monitoring in patients treated with troglitazone. JAMA 286, 831–833 (2001).

    CAS  PubMed  Google Scholar 

  41. Nolan, C. M., Goldberg, S. V. & Buskin, S. E. Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. JAMA 281, 1014–1018 (1999).

    CAS  PubMed  Google Scholar 

  42. Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000).

    CAS  PubMed  Google Scholar 

  43. Ulrich, R. G., Rockett, J. C., Gibson, G. G. & Pettit, S. D. Overview of an interlaboratory collaboration on evaluating the effects of model hepatotoxicants on hepatic gene expression. Environ. Health Perspect. 112, 423–427 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mattes, W. B. et al. Database development in toxicogenomics: issues and efforts. Environ. Health Perspect. 112, 495–505 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindon, J. C. et al. Contemporary issues in toxicology: the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl Pharmacol. 187, 137–146 (2003).

    CAS  PubMed  Google Scholar 

  46. Man, W. J. et al. Protein expression analysis of drug-mediated hepatotoxicity in the Sprague-Dawley rat. Proteomics 2, 1577–1585 (2002).

    CAS  PubMed  Google Scholar 

  47. Toyoda, Y., Tsuchida, A., Iwami, E. & Miwa, I. Toxic effect of troglitazone on cultured rat hepatocytes. Life Sci. 68, 1867–1876 (2001).

    CAS  PubMed  Google Scholar 

  48. Tirmenstein, M. A. et al. Effects of troglitazone on HepG2 viability and mitochondrial function. Toxicol Sci. 69, 131–138 (2002).

    CAS  PubMed  Google Scholar 

  49. Lloyd, S. et al. Differential in vitro hepatotoxicity of troglitazone and rosiglitazone among cryopreserved human hepatocytes from 37 donors. Chem. Biol Interact. 142, 57–71 (2002).

    CAS  PubMed  Google Scholar 

  50. Shayiq, R. M. et al. Repeat exposure to incremental doses of acetaminophen provides protection against acetaminophen-induced lethality in mice: an explanation for high acetaminophen dosage in humans without hepatic injury. Hepatology 29, 451–463 (1999).

    CAS  PubMed  Google Scholar 

  51. Nelson, S. D. & Bruschi, S. A. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 287–325 (Marcel Dekker, New York, 2003).

    Google Scholar 

  52. Lee, S. S. T. et al. Role of Cyp2e1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271, 12063–12067 (1996).

    CAS  PubMed  Google Scholar 

  53. Burk, R. F., Hill, K. E., Hunt, R. W. & Martin, A. E. Isoniazid potentiation of acetaminophen hepatotoxicity in the rat and 4-methylpyrazole inhibition of it. Res. Commun. Chem. Pathol. Pharmacol. 69, 115–118 (1990).

    CAS  PubMed  Google Scholar 

  54. Thummel, K. E. et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin. Pharm. Ther. 67, 591–599 (2000).

    CAS  Google Scholar 

  55. Chien, J. Y., Thummel, K. E. & Slattery, J. T. Pharmakinetic consequence of induction of CYP2E1 by ligand stabilization. Drug Metab. Dispos. 25, 1165–1175 (1997).

    CAS  PubMed  Google Scholar 

  56. Goldring, C. E. P. et al. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology 39, 1267–1276 (2004).

    CAS  PubMed  Google Scholar 

  57. Chan, K., Han, X. -D. & Kan, Y. W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc. Natl Acad. Sci. USA 98, 4611–4616 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishida, Y. et al. A pivotal involvement if IFN-γ in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J. 16, 1227–1236 (2002).

    CAS  PubMed  Google Scholar 

  59. Liu, Z. -X., Govindarajan, S. & Kaplowitz, N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127, 1760–1774 (2004).

    CAS  PubMed  Google Scholar 

  60. Bourdi, M. et al. Protection against acetaminophen induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35, 289–298 (2002).

    CAS  PubMed  Google Scholar 

  61. Masubuchi, Y. et al. Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem. Biophys. Res. Commun. 304, 207–212 (2003).

    CAS  PubMed  Google Scholar 

  62. Kaplowitz, N. Acetaminophen hepatotoxicity: what we know, what we don't know and where do we go? Hepatology 40, 23–26 (2004).

    PubMed  Google Scholar 

  63. Nagai, H., Matsumaru, K., Feng, G. & Kaplowitz, N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-α-induced apoptosis in cultured mouse hepatocytes. Hepatology 36, 55–64 (2002).

    CAS  PubMed  Google Scholar 

  64. Kaplowitz, N. Mechanisms of liver cell injury. J. Hepatol. 32, 39–47 (2000).

    CAS  PubMed  Google Scholar 

  65. Park, D. R. et al. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macro-phages. J. Immunol. 170, 6209–6216 (2003).

    CAS  PubMed  Google Scholar 

  66. Hohlbaum, A. M., Gregory, M. S., Ju, S. T. & Marshak-Rothstein, A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 167, 6217–6224 (2001).

    CAS  PubMed  Google Scholar 

  67. Liu, Z. -X. & Kaplowitz, N. in Clinics in Liver Disease 6, 467–486 (Elsevier, 2002).

    Google Scholar 

  68. Kaplowitz, N. in Seminars in Liver Disease Vol. 22 (eds Berk, P., Farrell, G. & Liddle, C.) 137–144 (Thieme Medical, New York, 2002).

    Google Scholar 

  69. Vergani, D. et al. Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N. Eng. J. Med. 303, 66–71 (1980).

    CAS  Google Scholar 

  70. Neuberger, J. & Williams, R. Immune mechanisms in tienilic acid associated hepatotoxicity. Gut 30, 515–519 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kon, K., Kim, J. -S., Jaeschke, H. & Lemasters, J. J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40, 1170–1179 (2004).

    CAS  PubMed  Google Scholar 

  72. Watanabe, I. et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin. Pharm. Ther. 73, 435–455 (2003).

    CAS  Google Scholar 

  73. Simon, T. et al. Combined glutathione S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharm. Ther. 67, 432–437 (2000).

    CAS  Google Scholar 

  74. Acuna, G. et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics J. 2, 327–334 (2002).

    CAS  PubMed  Google Scholar 

  75. Huang, Y. -S. et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculous drug-induced hepatitis. Hepatology 37, 924–930 (2003).

    CAS  PubMed  Google Scholar 

  76. Aithal, G. P. et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology 39, 1430–1440 (2004).

    CAS  PubMed  Google Scholar 

  77. Zhang, J. et al. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 298, 421–424 (2002).

    Google Scholar 

  78. Henderson, C. J. et al. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc. Natl Acad. Sci. USA 97, 12741–12745 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, H. et al. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nature Biotechnol. 18, 862–867 (2000).

    CAS  Google Scholar 

  80. Bone-Larson, C. L. et al. IFN-γ-inducible protein-10 (CXCL10) is hepatoprotective during acute liver injury through the induction of CXCR2 on hepatocytes. J. Immunol. 167, 7077–7083 (2001).

    CAS  PubMed  Google Scholar 

  81. Hogaboam, C. M. et al. Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J. 13, 1565–1574 (1999).

    CAS  PubMed  Google Scholar 

  82. Trepicchio, W. L., Bozza, M., Bouchard, P. & Dorner, A. J. Protective effect of rhIL-11 in a murine model of acetaminophen-induced hepatotoxicity. Toxicol. Pathol. 29, 242–249 (2001).

    CAS  PubMed  Google Scholar 

  83. Su, G. L. et al. Lipopolysaccharide-binding protein modulates acetaminophen-induced liver injury in mice. Hepatology 41, 187–195 (2005).

    CAS  PubMed  Google Scholar 

  84. Jollow, D. J. et al. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187, 195–202 (1973).

    CAS  PubMed  Google Scholar 

  85. Reilly, T. P. et al. A protective role for cycloxygenase-2 in drug-induced liver injury in mice. Chem. Res. Toxicol. 14, 1620–1628 (2001).

    CAS  PubMed  Google Scholar 

  86. Ju, C. et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol. 15, 1504–1513 (2002).

    CAS  PubMed  Google Scholar 

  87. Hogaboam, C. M. et al. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2. Am. J. Pathol. 156, 1245–1252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hogaboam, C. M. et al. Macrophage inflammatory protein-2 gene therapy attenuates adenovirus- and acetaminophen-mediated hepatic injury. Gene Ther. 6, 573–584 (1999).

    CAS  PubMed  Google Scholar 

  89. Tinel, M. et al. Subliminal Fas stimulation increases the hepatotoxicity of acetaminophen and bromobenzene in mice. Hepatology 39, 655–666 (2004).

    CAS  PubMed  Google Scholar 

  90. Matsumaru, K., Ji, C. & Kaplowitz, N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology 37, 1425–1434 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks M. Vidrio for assistance for preparing the manuscript and National Institutes of Health grants.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

N.K. is a consultant for AstraZeneca, GlaxoSmithKline, Pfizer and Sankyo, and plaintiff's expert witness in acetaminophen (paracetamol) litigation.

Glossary

HAPTEN

A small molecule that reacts with a specific antibody but which cannot induce the formation of antibodies unless bound to a carrier protein or other large antigenic molecule.

HEPATITIS

Inflammation of the liver, caused by infectious or toxic agents and characterized by jaundice, fever, liver enlargement and abdominal pain.

CHOLESTASIS

Stoppage or suppression of bile flow.

CHOLANGIOCYTE

Bile-duct epithelial cell.

STEATOSIS

Accumulation of fat in the liver.

STEATOHEPATITIS

The presence of fat in liver cells accompanied by inflammation and fibrosis.

CIRRHOSIS

A type of chronic, progressive liver disease in which liver cells are replaced by scar tissue.

PELIOSIS HEPATIS

Blood-filled spaces in the liver due to injury to endothelial cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4, 489–499 (2005). https://doi.org/10.1038/nrd1750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing