Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting glycosylation as a therapeutic approach

Key Points

  • Protein and lipid glycosylation are vital to fundamental cellular processes. For therapeutic strategies that target glycosylation, modulation rather than ablation of the enzymes involved is likely to be a necessity.

  • Imino sugars are monosaccharide mimics that have a nitrogen atom in place of the ring oxygen. Members of the imino-sugar family can inhibit several glycosylation enzymes, including ER α-glucosidases I and II, which are involved in processing glycoproteins, and the ceramide-specific glucosyltransferase, which is involved in glucosphingholipid (GSL) synthesis.

  • Inhibiting ER α-glucosidases can affect the folding of proteins that depend on an interaction with the chaperones calnexin and calreticulin. As the folding of some viral envelope proteins depends on this interaction, targeting ER α-glucosidases at a low level could be a potential strategy for treating viral infections, without compromising the host cell.

  • The imino sugar N-nonyl-deoxynojirimycin (N-nonyl-DNJ) has antiviral activity in an animal model of hepatitis B virus, and in bovine viral diarrhoea virus, an in vitro surrogate model of hepatitis C. Studies with the N-nonyl galactose analogue hint at an additional antiviral mechanism associated with the alkyl side chain.

  • In GSL storage diseases such as Tay–Sachs, Sandhoff and Gaucher disease, GSL species are stored in the lysosome owing to defects in enzymes in the GSL degradation pathway. Partially inhibiting GSL synthesis to redress the balance between synthesis and breakdown could compensate for these defects if some residual enzyme activity remains.

  • N-butyl-DNJ inhibits the first committed step of GSL biosynthesis, and improves disease pathology in mouse models of Tay–Sachs disease and Sandhoff disease. Data from a clinical trial of N-butyl-DNJ in patients with type I Gaucher disease indicate that GSL depletion improves all key clinical features of the disease, and these data have been submitted to regulatory authorities in Europe and the United States for approval.

Abstract

Increased understanding of the role of protein- and lipid-linked carbohydrates in a wide range of biological processes has led to interest in drugs that target the enzymes involved in glycosylation. But given the importance of carbohydrates in fundamental cellular processes such as protein folding, therapeutic strategies that modulate, rather than ablate, the activity of enzymes involved in glycosylation are likely to be a necessity. Two such approaches that use imino sugars to affect glycosylation enzymes now show considerable promise in the treatment of viral infections, such as hepatitis B, and glucosphingolipid storage disorders, such as Gaucher disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of glycoproteins that possess N-linked glycans.
Figure 2: Biosynthesis of glucosphingolipids.
Figure 3: The role of glycosylation in protein folding.
Figure 4: The glucosphingolipid cycle and glucosphingolipid storage diseases.

Similar content being viewed by others

References

  1. Zapun, A. et al. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell 88, 29–38 (1997).

    CAS  PubMed  Google Scholar 

  2. Rudd, P. M. et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293, 351–366 (1999).

    CAS  PubMed  Google Scholar 

  3. Weis, W. I., Taylor, M. E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Marquardt, T. & Freeze, H. Congenital disorders of glycosylation: glycosylation defects in man and biological models for their study. Biol. Chem. 382, 161–177 (2001).

    CAS  PubMed  Google Scholar 

  5. Dwek, R. A. Glycobiology: 'towards understanding the function of sugars'. Biochem. Soc. Trans. 23, 1–25 (1995).A comprehensive review of concepts in glycobiology.

    CAS  PubMed  Google Scholar 

  6. Dennis, J. W., Granovsky, M. & Warren, C. E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999).

    CAS  PubMed  Google Scholar 

  7. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    CAS  PubMed  Google Scholar 

  8. Yamashita, T. et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl Acad. Sci. USA 96, 9142–9147 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Walkley, S. U. Cellular pathology of lysosomal storage disorders. Brain Pathol. 8, 175–193 (1998).

    CAS  PubMed  Google Scholar 

  10. Winchester, B. & Fleet, G. W. Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists. Glycobiology 2, 199–210 (1992).

    CAS  PubMed  Google Scholar 

  11. Butters, T., Dwek, R. & Platt, F. Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chem. Rev. 100, 4683–4696 (2000).

    CAS  PubMed  Google Scholar 

  12. Butters, T. D. et al. Molecular requirements of imino sugars for the selective control of N-linked glycosylation and glycospingolipid biosynthesis. Tetrahedron Asymmetry 11, 113–124 (2000).

    CAS  Google Scholar 

  13. Jacob, G. S. Glycosylation inhibitors in biology and medicine. Curr. Opin. Struct. Biol. 5, 605–611 (1995).

    CAS  PubMed  Google Scholar 

  14. Mitrakou, A. et al. Long-term effectiveness of a new α-glucosidase inhibitor (BAY m1099–miglitol) in insulin-treated type 2 diabetes mellitus. Diabet. Med. 15, 657–660 (1998).

    CAS  PubMed  Google Scholar 

  15. Goss, P. E., Reid, C. L., Bailey, D. & Dennis, J. W. Phase 1B clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin. Cancer Res. 3, 1077–1086 (1997).

    CAS  PubMed  Google Scholar 

  16. Bergeron, J. J., Brenner, M. B., Thomas, D. Y. & Williams, D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128 (1994).

    CAS  PubMed  Google Scholar 

  17. Peterson, J. R., Ora, A., Van, P. N. & Helenius, A. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol. Biol. Cell 6, 1173–1184 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mehta, A., Zitzmann, N., Rudd, P. M., Block, T. M. & Dwek, R. A. α-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 430, 17–22 (1998).

    CAS  PubMed  Google Scholar 

  19. McGinnes, L. W. & Morrison, T. G. Role of carbohydrate processing and calnexin binding in the folding and activity of the HN protein of Newcastle disease virus. Virus Res. 53, 175–185 (1998).

    CAS  PubMed  Google Scholar 

  20. Mirazimi, A., Nilsson, M. & Svensson, L. The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J. Virol. 72, 8705–8709 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Werr, M. & Prange, R. Role for calnexin and N-linked glycosylation in the assembly and secretion of hepatitis B virus middle envelope protein particles. J. Virol. 72, 778–782 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Branza-Nichita, N., Durantel, D., Carrouee-Durantel, S., Dwek, R. A. & Zitzmann, N. Antiviral effect of N-butyldeoxynojirimycin against bovine viral diarrhea virus correlates with misfolding of E2 envelope proteins and impairment of their association into E1–E2 heterodimers. J. Virol. 75, 3527–3536 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Choukhi, A., Ung, S., Wychowski, C. & Dubuisson, J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J. Virol. 72, 3851–3858 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Repp, R. et al. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of coronavirus particles. J. Biol. Chem. 260, 15873–15879 (1985).

    CAS  PubMed  Google Scholar 

  25. Schlesinger, S., Koyama, A. H., Malfer, C., Gee, S. L. & Schlesinger, M. J. The effects of inhibitors of glucosidase I on the formation of Sindbis virus. Virus Res. 2, 139–149 (1985).

    CAS  PubMed  Google Scholar 

  26. Pinter, A., Honnen, W. J. & Li, J. S. Studies with inhibitors of oligosaccharide processing indicate a functional role for complex sugars in the transport and proteolysis of Friend mink cell focus-inducing murine leukemia virus envelope proteins. Virology 136, 196–210 (1984).

    CAS  PubMed  Google Scholar 

  27. Poss, M. L., Mullins, J. I. & Hoover, E. A. Posttranslational modifications distinguish the envelope glycoprotein of the immunodeficiency disease-inducing feline leukemia virus retrovirus. J. Virol. 63, 189–195 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ratner, L., Vander Heyden, N. & Dedera, D. Inhibition of HIV and SIV infectivity by blockade of α-glucosidase activity. Virology 181, 180–192 (1991).

    CAS  PubMed  Google Scholar 

  29. Lu, X., Mehta, A., Dwek, R., Butters, T. & Block, T. Evidence that N-linked glycosylation is necessary for hepatitis B virus secretion. Virology 213, 660–665 (1995).

    CAS  PubMed  Google Scholar 

  30. Durantel, D. et al. Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J. Virol. 75, 8987–8998 (2001).Shows the antiviral properties of long alkyl-chain imino sugars, including those with a galactose-analogue headgroup, against a surrogate model of HCV.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Freed, E. O. & Martin, M. A. in Fields Virology 4th edn Vol. 2 (eds Knipe, D. M. et al.) 1971–2041 (Lippincott, Williams and Willkins, Philadelphia, 2001).

    Google Scholar 

  32. Fischer, P. B. et al. The α-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J. Virol. 69, 5791–5797 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Elbein, A. D. Glycosidase inhibitors as antiviral and/or antitumor agents. Semin. Cell Biol. 2, 309–317 (1991).

    CAS  PubMed  Google Scholar 

  34. Fischer, P. B., Karlsson, G. B., Dwek, R. A. & Platt, F. M. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure. J. Virol. 70, 7153–7160 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fischer, P. B., Karlsson, G. B., Butters, T. D., Dwek, R. A. & Platt, F. M. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J. Virol. 70, 7143–7152 (1996).Elucidates the mechanism of action of N B-DNJ against HIV.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Platt, F. M. & Butters, T. D. Substrate deprivation: A new therapeutic approach for the glycosphingolipid lysosomal storage diseases. Exp. Rev. Mol. Med. (2000). [http://www-ermm.cbcu.cam.ac.uk/00001484h.htm].

  37. Fischl, M. A. et al. The safety and efficacy of combination N-butyl-deoxynojirimycin (SC-48334) and zidovudine in patients with HIV-1 infection and 200–500 CD4 cells/mm3. J. Acquir. Immune Defic. Syndr. 7, 139–147 (1994).

    CAS  PubMed  Google Scholar 

  38. Hollinger, F. B. & Liang, T. J. in Fields Virology 4th edn Vol. 2 (eds Knipe, D. M. et al.) 2971–3036 (Lippincott, Williams and Willkins, Philadelphia, 2001).

    Google Scholar 

  39. Block, T. M. et al. Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin. Proc. Natl Acad. Sci. USA 91, 2235–2239 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mehta, A., Lu, X., Block, T. M., Blumberg, B. S. & Dwek, R. A. Hepatitis B virus (HBV) envelope glycoproteins vary drastically in their sensitivity to glycan processing: evidence that alteration of a single N-linked glycosylation site can regulate HBV secretion. Proc. Natl Acad. Sci. USA 94, 1822–1827 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, S. E. & Spiro, R. G. Demonstration that Golgi endo-α-d-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins. J. Biol. Chem. 265, 13104–13112 (1990).

    CAS  PubMed  Google Scholar 

  42. Block, T. M. et al. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nature Med. 4, 610–614 (1998).First demonstration of antiviral action of N -nonyl-DNJ in an animal model of HBV.

    CAS  PubMed  Google Scholar 

  43. Lindenbach, B. D. & Rice, C. M. Flaviviridae: in Fields Virology 4th edn Vol. 1 (eds Knipe, D. M. et al.) 991–1041 (Lippincott, Williams and Willkins, Philadelphia, 2001).

    Google Scholar 

  44. Deleersnyder, V. et al. Formation of native hepatitis C virus glycoprotein complexes. J. Virol. 71, 697–704 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zitzmann, N. et al. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. Proc. Natl Acad. Sci. USA 96, 11878–11882 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Andersson, U., Butters, T. D., Dwek, R. A. & Platt, F. M. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem. Pharmacol. 59, 821–829 (2000).Evidence of greater tolerability of N B-DGJ relative to N B-DNJ.

    CAS  PubMed  Google Scholar 

  47. Mehta, A. et al. Inhibition of hepatitis B virus DNA replication by imino sugars without the inhibition of the DNA polymerase: therapeutic implications. Hepatology 33, 1488–1495 (2001).

    CAS  PubMed  Google Scholar 

  48. Meikle, P. J., Hopwood, J. J., Clague, A. E. & Carey, W. F. Prevalence of lysosomal storage disorders. J. Am. Med. Assoc. 281, 249–254 (1999). | PubMed |

    CAS  Google Scholar 

  49. Beutler, E. & Grabowski, G. in Gaucher Disease (eds Scriver, C. R., Beadet, A. L., Valle, D. & Sly, W. S.) 3635–3668 (McGraw Hill, New York, 2001).

    Google Scholar 

  50. Vunnam, R. R. & Radin, N. S. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem. Phys. Lipids 26, 265–278 (1980).

    CAS  PubMed  Google Scholar 

  51. Radin, N. S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj. J. 13, 153–157 (1996).

    CAS  PubMed  Google Scholar 

  52. Platt, F. M. & Butters, T. D. Inhibitors of glycosphingolipid biosynthesis. Trends Glycosci. Glycotechnol. 7, 495–511 (1995).

    CAS  Google Scholar 

  53. Platt, F. M. & Butters, T. D. New therapeutic prospects for the glycosphingolipid lysosomal storage diseases. Biochem. Pharmacol. 56, 421–430 (1998).

    CAS  PubMed  Google Scholar 

  54. Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).Identification of N B-DNJ as an inhibitor of GSL biosynthesis.

    CAS  PubMed  Google Scholar 

  55. Platt, F. M., Karlsson, G. B. & Jacob, G. S. Modulation of cell-surface transferrin receptor by the imino sugar N-butyldeoxynojirimycin. Eur. J. Biochem. 208, 187–193 (1992).

    CAS  PubMed  Google Scholar 

  56. Platt, F. M., Neises, G. R., Karlsson, G. B., Dwek, R. A. & Butters, T. D. N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J. Biol. Chem. 269, 27108–27114 (1994).First description of N B-DGJ as an inhibitor of GSL biosynthesis.

    CAS  PubMed  Google Scholar 

  57. Suzuki, K., Proia, R. L. & Suzuki, K. Mouse models of human lysosomal diseases. Brain Pathol. 8, 195–215 (1998).

    CAS  PubMed  Google Scholar 

  58. Platt, F. M., Reinkensmeier, G., Dwek, R. A. & Butters, T. D. Extensive glycosphingolipid depletion in the liver and lymphoid organs of mice treated with N-butyldeoxynojirimycin. J. Biol. Chem. 272, 19365–19372 (1997).

    CAS  PubMed  Google Scholar 

  59. Yamanaka, S. et al. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay–Sachs disease. Proc. Natl Acad. Sci. USA 91, 9975–9979 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Taniike, M. et al. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay–Sachs disease. Acta NeuroPathol. (Berl.) 89, 296–304 (1995).

    CAS  Google Scholar 

  61. Sango, K. et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genet. 11, 170–176 (1995).

    CAS  PubMed  Google Scholar 

  62. Platt, F. M. et al. Prevention of lysosomal storage in Tay–Sachs mice treated with N-butyldeoxynojirimycin. Science 276, 428–431 (1997).Demonstrates the in vivo efficacy of SRT in a mouse model of a GSL storage disease.

    CAS  PubMed  Google Scholar 

  63. Jeyakumar, M. et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc. Natl Acad. Sci. USA 96, 6388–6393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jeyakumar, M. et al. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97, 327–329 (2001).

    CAS  PubMed  Google Scholar 

  65. Liu, Y. et al. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J. Clin. Invest. 103, 497–505 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zervas, M., Somers, K. L., Thrall, M. A. & Walkley, S. U. Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr. Biol. 11, 1283–1287 (2001).

    CAS  PubMed  Google Scholar 

  67. Liu, Y. et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse. Hum. Mol. Genet. 9, 1087–1092 (2000).

    CAS  PubMed  Google Scholar 

  68. Cox, T. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000).First clinical study reporting efficacy of SRT in type 1 Gaucher disease.

    CAS  PubMed  Google Scholar 

  69. Priestman, D. A., Platt, F. M., Dwek, R. A. & Butters, T. D. Imino sugar therapy for type 1 Gaucher disease. Glycobiology 10, 4–5 (2000).

    Google Scholar 

  70. Lachmann, R. H. & Platt, F. M. Substrate reduction therapy for glycosphingolipid storage disorders. Exp. Opin. Invest. Drugs 10, 455–466 (2001).

    CAS  Google Scholar 

  71. Taylor, D. L. et al. 6-0-butanoylcastanospermine (MDL 28,574) inhibits glycoprotein processing and the growth of HIV. AIDS 5, 693–698 (1991).

    CAS  PubMed  Google Scholar 

  72. Sunkara, P. S., Bowlin, T. L., Liu, P. S. & Sjoerdsma, A. Antiretroviral activity of castanospermine and deoxynojirimycin, specific inhibitors of glycoprotein processing. Biochem. Biophys. Res. Commun. 148, 206–210 (1987).

    CAS  PubMed  Google Scholar 

  73. Bridges, C. G. et al. The effect of oral treatment with 6-O-butanoyl castanospermine (MDL 28,574) in the murine zosteriform model of HSV-1 infection. Glycobiology 5, 249–253 (1995).

    CAS  PubMed  Google Scholar 

  74. Ahmed, S. P. et al. Antiviral activity and metabolism of the castanospermine derivative MDL 28,574, in cells infected with herpes simplex virus type 2. Biochem. Biophys. Res. Commun. 208, 267–273 (1995).

    CAS  PubMed  Google Scholar 

  75. Gretch, D. R., Gehrz, R. C. & Stinski, M. F. Characterization of a human cytomegalovirus glycoprotein complex (gcI). J. Gen. Virol. 69, 1205–1215 (1988).

    CAS  PubMed  Google Scholar 

  76. Taylor, D. L. et al. Loss of cytomegalovirus infectivity after treatment with castanospermine or related plant alkaloids correlates with aberrant glycoprotein synthesis. Antiviral Res. 10, 11–26 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Datema, R., Romero, P. A., Rott, R. & Schwarz, R. T. On the role of oligosaccharide trimming in the maturation of Sindbis and influenza virus. Arch. Virol. 81, 25–39 (1984).

    CAS  PubMed  Google Scholar 

  78. McDowell, W., Romero, P. A., Datema, R. & Schwarz, R. T. Glucose trimming and mannose trimming affect different phases of the maturation of Sindbis virus in infected BHK cells. Virology 161, 37–44 (1987).

    CAS  PubMed  Google Scholar 

  79. Kaluza, G., Repges, S. & McDowell, W. The significance of carbohydrate trimming for the antigenicity of the Semliki Forest virus glycoprotein E2. Virology 176, 369–378 (1990).

    CAS  PubMed  Google Scholar 

  80. Repges-Illguth, S. & Kaluza, G. Differences in antigenicity of E2 in Semliki Forest virus particles and in infected cells. Arch. Virol. 135, 433–435 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schlesinger, S., Malfer, C. & Schlesinger, M. J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein. J. Biol. Chem. 259, 7597–7601 (1984).

    CAS  PubMed  Google Scholar 

  82. Malvoisin, E. & Wild, F. The role of N-glycosylation in cell fusion induced by a vaccinia recombinant virus expressing both measles virus glycoproteins. Virology 200, 11–20 (1994).

    CAS  PubMed  Google Scholar 

  83. Courageot, M. P., Frenkiel, M. P., Dos Santos, C. D., Deubel, V. & Despres, P. α-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J. Virol. 74, 564–572 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lad, V. J., Shende, V. R., Gupta, A. K., Koshy, A. A. & Roy, A. Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells. Acta Virol. 44, 359–364 (2000).

    CAS  PubMed  Google Scholar 

  85. Wright, K. E., Spiro, R. C., Burns, J. W. & Buchmeier, M. J. Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus. Virology 177, 175–183 (1990).

    CAS  PubMed  Google Scholar 

  86. Silber, A. M., Candurra, N. A. & Damonte, E. B. The effects of oligosaccharide trimming inhibitors on glycoprotein expression and infectivity of Junin virus. FEMS Microbiol. Lett. 109, 39–43 (1993).

    CAS  PubMed  Google Scholar 

  87. Jarvis, D. L. & Garcia, A. Jr. Biosynthesis and processing of the Autographa californica nuclear polyhedrosis virus gp64 protein. Virology 205, 300–313 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.M.P. is a Lister Institute Research Fellow. N.Z. is a Dorothy Hodgkin Royal Society Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Dwek.

Related links

Related links

DATABASES

LocusLink

calnexin

calreticulin

CD4

ceramide galactosyltransferase

CerGlcT

chitotriosidase

ER α-glucosidase I

ER α-glucosidase II

glucocerebrosidase

HEXA

Hexa

HEXB

Hexb

β-hexosaminidase

α-mannosidase I

α-mannosidase II

NPC1

Npc1

NPC2

OMIM

Fabry disease

Gaucher type 1

Gaucher type 2

Gaucher type 3

GM2 gangliosidosis

non-insulin-dependent diabetes

NPC disease

Sandhoff disease

Tay–Sachs disease

Medscape DrugInfo

Miglitol

FURTHER INFORMATION

Encyclopedia of Life Sciences

Glycosylation and disease

Glossary

GLYCAN

A polymer consisting of monosaccharides linked together by glycosidic bonds.

ENDOPLASMIC RETICULUM

Membrane-bounded compartment in the cytoplasm of eukaryotic cells, in which lipids, membrane-bound and secreted proteins are synthesized.

GOLGI APPARATUS

Membrane-bounded organelle in eukaryotic cells, in which lipids and proteins made in the endoplasmic reticulum are modified and sorted.

GLYCOSYLTRANSFERASE

Glycosyltransferases produce glycosidic bonds by transferring a glycosyl group — any group formed by detaching the glycosidic hydroxyl group from the cyclic form of a monosaccharide, oligosaccharide or derivatives.

GLYCOSIDASE

An enzyme that hydrolyses glycosidic bonds.

LYSOSOME

Membrane-bounded organelle in eukaryotic cells responsible for controlled intracellular digestion of macromolecules. Lysosomes contain a wide range of hydrolytic enzymes, including glycosidases.

CHARGE-TRANSITION-STATE ANALOGUES

A structural mimic of the transition state between reactant(s) and product(s) for a given reaction. Transition-state analogues make good inhibitors because they are bound to the enzyme more tightly than the substrates.

ENVELOPE

A lipoprotein-bilayer outer membrane of many viruses. Envelope proteins are often heavily glycosylated.

SYNCYTIUM

A mass of cytoplasm containing several separate nuclei enclosed in a continuous membrane resulting from the fusion of individual cells.

V1/V2 LOOP

The gp120 protein has eleven defined loop segments, five of which are termed variable (designated V1–V5). The tip of one of the six non-variable loops forms a β-hairpin that hydrogen bonds with two parallel strands from the V1/V2 loop to form a β-sheet that effectively connects the inner and outer domains.

VIRAEMIA

The presence of viruses in the blood.

VIRION

A mature infectious virus particle.

PLAQUE-REDUCTION ASSAY

Virus-induced cell death causes a plaque in a cell monolayer. Plaques can be counted to indicate how much virus is present.

MULTIPLICITY OF INFECTION

(MOI). The (average) number of virus particles that infect each cell in an experiment.

MACROPHAGE

A type of white blood cell that is specialized for the uptake of material by phagocytosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwek, R., Butters, T., Platt, F. et al. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 1, 65–75 (2002). https://doi.org/10.1038/nrd708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing