Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intestinal microbiota and chronic disorders of the gut

Abstract

Mucosal surfaces of the gut are colonized by large numbers of heterogeneous bacteria that contribute to intestinal health and disease. In genetically susceptible individuals, a 'pathogenic community' may arise, whereby abnormal gut flora contributes to alterations in the mucosa and local immune system leading to gastrointestinal disease. These diseases include enteric infections, such as Clostridium difficile infection, small intestinal bacterial overgrowth, functional gastrointestinal disorders (including IBS), IBD and colorectal cancer. Prebiotics, probiotics and synbiotics (a combination of prebiotics and probiotics) have the capacity to reverse pathologic changes in gut flora and local immunity. Intestinal health and disease need to be thoroughly characterized to understand the interplay between the indigenous microbiota, the immune system and genetic host factors. This Review provides a broad overview of the importance of the intestinal microbiota in chronic disorders of the gut.

Key Points

  • The intestinal microbiota consists of heterogeneous and largely nonculturable bacteria that orchestrate homeostasis by communicating with the epithelium and innate and adaptive immune mechanisms of the gut

  • Host immunity is directly involved in the control of the intestinal microbiota and susceptibility to chronic intestinal disease

  • Enteric infection by a high-grade bacterial pathogen can alter susceptibility to IBS by producing chronic intestinal inflammation and a series of events that leads to altered bowel function

  • Certain bacteria in the lumen of the gut can cross the intestinal mucosa, causing systemic infection in a process called 'translocation'

  • In IBD, abnormal gut flora (which may include pathogenic species) and the presence of bacterial antigens with biologic properties produce a 'pathogenic community', leading to intestinal inflammation

  • Modulation of the intestinal microbiota may be possible through diet or by administration of prebiotics, probiotics, synbiotics, or by fecal transplantation of donor stool from a healthy individual

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The homeostatic role of the intestinal microbiota.
Figure 2: Pathogenesis of IBS and postinfectious IBS.
Figure 3: The role of intestinal microbiota and enteric pathogens in the pathogenesis of IBD.

Similar content being viewed by others

References

  1. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Nikkila, J. & de Vos, W. M. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis. J. Clin. Gastroenterol. 44 (Suppl. 1), S2–S5 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Kinross, J. M., Darzi, A. W. & Nicholson, J. K. Gut microbiome-host interactions in health and disease. Genome Med. 3, 14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauer, H., Paronetto, F., Burns, W. A. & Einheber, A. The enhancing effect of the microbial flora on macrophage function and the immune response. A study in germfree mice. J. Exp. Med. 123, 1013–1024 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuda, M. et al. Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen. Immunol. Lett. 132, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Vijay-Kumar, M. et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117, 3909–3921 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Jackson, R. J., Smith, S. D., Wadowsky, R. M., DePudyt, L. & Rowe, M. I. The effect of E coli virulence on bacterial translocation and systemic sepsis in the neonatal rabbit model. J. Pediatr. Surg. 26, 483–485 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mahjoub-Messai, F. et al. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract Infection in young infants exhibit different virulence genotypes. J. Infect. Dis. 203, 1844–1849 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Katayama, M., Xu, D., Specian, R. D. & Deitch, E. A. Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats. Ann. Surg. 225, 317–326 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merlini, E. et al. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS ONE 6, e18580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DuPont, H. L. The search for effective treatment of Clostridium difficile infection. N. Engl. J. Med. 364, 473–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  23. Grehan, M. J. et al. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J. Clin. Gastroenterol. 44, 551–561 (2010).

    Article  PubMed  Google Scholar 

  24. Poppe, C. et al. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can. J. Vet. Res. 70, 105–114 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Varma, J. K. et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002–2003. J. Infect. Dis. 194, 222–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Neill, M. A. et al. Failure of ciprofloxacin to eradicate convalescent fecal excretion after acute salmonellosis: experience during an outbreak in health care workers. Ann. Intern. Med. 114, 195–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Effler, P. et al. Sporadic Campylobacter jejuni infections in Hawaii: associations with prior antibiotic use and commercially prepared chicken. J. Infect. Dis. 183, 1152–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Moore, J. E., McLernon, P., Wareing, D., Xu, J. & Murphy, P. G. Characterisation of fluoroquinolone-resistant Campylobacter species isolated from human beings and chickens. Vet. Rec. 150, 518–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Dibaise, J. K., Young, R. J. & Vanderhoof, J. A. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin. Gastroenterol. Hepatol. 4, 11–20 (2006).

    Article  PubMed  Google Scholar 

  30. Corazza, G. R. et al. The diagnosis of small bowel bacterial overgrowth. Reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterology 98, 302–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Riordan, S. M., McIver, C. J., Duncombe, V. M. & Bolin, T. D. Bacteriologic analysis of mucosal biopsy specimens for detecting small-intestinal bacterial overgrowth. Scand. J. Gastroenterol. 30, 681–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Bratten, J. R., Spanier, J. & Jones, M. P. Lactulose breath testing does not discriminate patients with irritable bowel syndrome from healthy controls. Am. J. Gastroenterol. 103, 958–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Sahakian, A. B., Jee, S. R. & Pimentel, M. Methane and the gastrointestinal tract. Dig. Dis. Sci. 55, 2135–2143 (2010).

    Article  PubMed  Google Scholar 

  34. Khoshini, R., Dai, S. C., Lezcano, S. & Pimentel, M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig. Dis. Sci. 53, 1443–1454 (2008).

    Article  PubMed  Google Scholar 

  35. Bauer, T. M. et al. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am. J. Gastroenterol. 97, 2364–2370 (2002).

    Article  PubMed  Google Scholar 

  36. Morencos, F. C. et al. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig. Dis. Sci. 41, 552–556 (1996).

    Article  Google Scholar 

  37. Gunnarsdottir, S. A. et al. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am. J. Gastroenterol. 98, 1362–1370 (2003).

    Article  PubMed  Google Scholar 

  38. Morencos, F. C. et al. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig. Dis. Sci. 40, 1252–1256 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, A. et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J. Hepatol. 53, 849–855 (2010).

    Article  PubMed  Google Scholar 

  40. Pande, C., Kumar, A. & Sarin, S. K. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Aliment. Pharmacol. Ther. 29, 1273–1281 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Bjarnason, I., Peters, T. J. & Wise, R. J. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1, 179–182 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Lorenzo-Zuniga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Campillo, B. Intestinal permeability in liver cirrhosis: relationship with severe septic complications. Eur. J. Gastroenterol. Hepatol. 11, 755–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. & Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez, E., Casafont, F., Guerra, A., de Benito, I. & Pons-Romero, F. Role of intestinal bacterial overgrowth and intestinal motility in bacterial translocation in experimental cirrhosis. Rev. Esp. Enferm. Dig. 97, 805–814 (2005).

    CAS  PubMed  Google Scholar 

  46. Drossman, D. A., Camilleri, M., Mayer, E. A. & Whitehead, W. E. AGA technical review on irritable bowel syndrome. Gastroenterology 123, 2108–2131 (2002).

    Article  PubMed  Google Scholar 

  47. Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Krogius-Kurikka, L. et al. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. 9, 95 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lyra, A. et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J. Gastroenterol. 15, 5936–5945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tana, C. et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 512–519, e114–e3115 (2010).

    CAS  PubMed  Google Scholar 

  51. McKernan, D. P., Gaszner, G., Quigley, E. M., Cryan, J. F. & Dinan, T. G. Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment. Pharmacol. Ther. 33, 1045–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schoepfer, A. M., Schaffer, T., Seibold-Schmid, B., Muller, S. & Seibold, F. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol. Motil. 20, 1110–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  54. Lee, K. J. & Tack, J. Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 493–498 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Esposito, I. et al. Breath test for differential diagnosis between small intestinal bacterial overgrowth and irritable bowel disease: an observation on non-absorbable antibiotics. World J. Gastroenterol. 13, 6016–6021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lupascu, A. et al. Hydrogen glucose breath test to detect small intestinal bacterial overgrowth: a prevalence case–control study in irritable bowel syndrome. Aliment. Pharmacol. Ther. 22, 1157–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Pimentel, M., Chow, E. J. & Lin, H. C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 95, 3503–3506 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Shah, E. D., Basseri, R. J., Chong, K. & Pimentel, M. Abnormal breath testing in IBS: a meta-analysis. Dig. Dis. Sci. 55, 2441–2449 (2010).

    Article  PubMed  Google Scholar 

  59. Posserud, I., Stotzer, P. O., Bjornsson, E. S., Abrahamsson, H. & Simren, M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 56, 802–808 (2007).

    Article  PubMed  Google Scholar 

  60. Pimentel, M. et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N. Engl. J. Med. 364, 22–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Brown, E. L., Xue, Q., Jiang, Z. D., Xu, Y. & Dupont, H. L. Pretreatment of epithelial cells with rifaximin alters bacterial attachment and internalization profiles. Antimicrob. Agents Chemother. 54, 388–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Kerlin, P. & Phillips, S. Variability of motility of the ileum and jejunum in healthy humans. Gastroenterology 82, 694–700 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Vantrappen, G., Janssens, J., Hellemans, J. & Ghoos, Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J. Clin. Invest. 59, 1158–1166 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pimentel, M., Soffer, E. E., Chow, E. J., Kong, Y. & Lin, H. C. Lower frequency of MMC is found in IBS subjects with abnormal lactulose breath test, suggesting bacterial overgrowth. Dig. Dis. Sci. 47, 2639–2643 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Barbara, G. et al. New pathophysiological mechanisms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 20 (Suppl. 2), 1–9 (2004).

    Article  PubMed  Google Scholar 

  66. Lin, H. C. Small intestinal bacterial overgrowth: a framework for understanding irritable bowel syndrome. JAMA 292, 852–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Salonen, A., de Vos, W. M. & Palva, A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156, 3205–3215 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Andoh, A. et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol. 46, 479–486 (2011).

    Article  PubMed  Google Scholar 

  69. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Onderdonk, A. B., Hermos, J. A. & Bartlett, J. G. The role of the intestinal microflora in experimental colitis. Am. J. Clin. Nutr. 30, 1819–1825 (1977).

    Article  CAS  PubMed  Google Scholar 

  72. Lal, S. & Steinhart, A. H. Antibiotic therapy for Crohn's disease: a review. Can. J. Gastroenterol. 20, 651–655 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Mow, W. S. et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease. Gastroenterology 126, 414–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 80–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Subramanian, S. et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal, E. coli and its inhibition by mesalamine. Inflamm. Bowel Dis. 14, 162–175 (2008).

    Article  PubMed  Google Scholar 

  78. Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54 (2002).

    Article  PubMed  Google Scholar 

  79. Chassaing, B. & Darfeuille-Michaud, A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1720–1728 e3 (2011).

    Article  PubMed  Google Scholar 

  80. Gewirtz, A. T. Flag in the crossroads: flagellin modulates innate and adaptive immunity. Curr. Opin. Gastroenterol. 22, 8–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Wullaert, A. Role of NF-kappaB activation in intestinal immune homeostasis. Int. J. Med. Microbiol. 300, 49–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Pruteanu, M., Hyland, N. P., Clarke, D. J., Kiely, B. & Shanahan, F. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1189–1200 (2010).

    Article  PubMed  Google Scholar 

  83. Maccaferri, S. et al. Rifaximin modulates the colonic microbiota of patients with Crohn's disease: an in vitro approach using a continuous culture colonic model system. J. Antimicrob. Chemother. 65, 2556–2565 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ott, S. J. & Schreiber, S. Reduced microbial diversity in inflammatory bowel diseases. Gut 55, 1207 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis. 17, 185–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Bibiloni, R., Mangold, M., Madsen, K. L., Fedorak, R. N. & Tannock, G. W. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J. Med. Microbiol. 55, 1141–1149 (2006).

    Article  PubMed  Google Scholar 

  88. Seksik, P. et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chassaing, B. et al. Crohn disease--associated adherent-invasive, E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae. J. Clin. Invest. 121, 966–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421 (2004).

    Article  PubMed  Google Scholar 

  91. Jia, W. et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol. Lett. 310, 138–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15. 653–660 (2009).

    Article  PubMed  Google Scholar 

  93. Schippa, S. et al. Dominant genotypes in mucosa-associated Escherichia coli strains from pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 661–672 (2009).

    Article  PubMed  Google Scholar 

  94. Petersen, A. M. et al. A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease. BMC Microbiol. 9, 171 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mitchell, D. N. & Rees, R. J. Agent transmissible from Crohn's disease tissue. Lancet 2, 168–171 (1970).

    Article  CAS  PubMed  Google Scholar 

  96. Dessein, R., Rosenstiel, P. & Chamaillard, M. Debugging the intestinal microbiota in IBD. Gastroenterol. Clin. Biol. 33 (Suppl. 3), S131–S136 (2009).

    Article  PubMed  Google Scholar 

  97. Hollander, D. et al. Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann. Intern. Med. 105, 883–885 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Keita, A. V. et al. Increased uptake of non-pathogenic, E. coli via the follicle-associated epithelium in longstanding ileal Crohn's disease. J. Pathol. 215, 135–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Achkar, J. P. & Duerr, R. The expanding universe of inflammatory bowel disease genetics. Curr. Opin. Gastroenterol. 24, 429–434 (2008).

    Article  PubMed  Google Scholar 

  102. Sydora, B. C., McFarlane, S. M., Doyle, J. S. & Fedorak, R. N. Neonatal exposure to fecal antigens reduces intestinal inflammation. Inflamm. Bowel Dis. 17, 899–906 (2011).

    Article  PubMed  Google Scholar 

  103. Singhal, S. et al. The role of oral hygiene in inflammatory bowel disease. Dig. Dis. Sci. 56, 170–175 (2011).

    Article  PubMed  Google Scholar 

  104. Matricon, J., Barnich, N. & Ardid, D. Immunopathogenesis of inflammatory bowel disease. Self Nonself 1, 299–309 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Swidsinski, A. et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115, 281–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. de Martel, C. & Franceschi, S. Infections and cancer: established associations and new hypotheses. Crit. Rev. Oncol. Hematol. 70, 183–194 (2009).

    Article  PubMed  Google Scholar 

  108. Chung, K. T., Stevens, S. E. Jr & Cerniglia, C. E. The reduction of azo dyes by the intestinal microflora. Crit. Rev. Microbiol. 18, 175–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Candela, M. et al. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit. Rev. Microbiol. 37, 1–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Breuer, N. & Goebell, H. The role of bile acids in colonic carcinogenesis. Klin. Wochenschr. 63, 97–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  112. Hope, M. E., Hold, G. L., Kain, R. & El-Omar, E. M. Sporadic colorectal cancer—role of the commensal microbiota. FEMS Microbiol. Lett. 244, 1–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, M. M., Cheng, J. Q., Xia, L., Lu, Y. R. & Wu, X. T. Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med. Hypotheses 76, 670–672 (2011).

    Article  PubMed  Google Scholar 

  114. Fallani, M. et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157, 1385–1392 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Shen, Q., Chen, Y. A., Tuohy, K. M. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe 16, 572–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Vulevic, J., Rastall, R. A. & Gibson, G. R. Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol. Lett. 236, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Bodera, P. Influence of prebiotics on the human immune system (GALT). Recent Pat. Inflamm. Allergy Drug Discov. 2, 149–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Schley, P. D. & Field, C. J. The immune-enhancing effects of dietary fibres and prebiotics. Br. J. Nutr. 87 (Suppl. 2), S221–S230 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Pothoulakis, C. Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment. Pharmacol. Ther. 30, 826–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. D'Inca, R. et al. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig. Dis. Sci. 56, 1178–1187 (2011).

    Article  PubMed  Google Scholar 

  121. Gareau, M. G., Sherman, P. M. & Walker, W. A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Oelschlaeger, T. A. Mechanisms of probiotic actions—a review. Int. J. Med. Microbiol. 300, 57–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Damaskos, D. & Kolios, G. Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'. Br. J. Clin. Pharmacol. 65, 453–467 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Silverman, M. S., Davis, I. & Pillai, D. R. Success of self-administered home fecal transplantation for chronic Clostridium difficile infection. Clin. Gastroenterol. Hepatol. 8, 471–473 (2010).

    Article  PubMed  Google Scholar 

  125. Sproule-Willoughby, K. M. et al. In vitro anaerobic biofilms of human colonic microbiota. J. Microbiol. Methods 83, 296–301 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Andrew W. DuPont.

Ethics declarations

Competing interests

A. W. DuPont receives grant/research support from Salix Pharmaceuticals and is a consultant for Lexicon Pharmaceuticals. H. L. DuPont receives grant/research support from Intercell, Osel Inc., Santarus and Novartis. He acts as a consultant, is on the speakers bureau and receives grant/research support from Salix Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DuPont, A., DuPont, H. The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 8, 523–531 (2011). https://doi.org/10.1038/nrgastro.2011.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing