Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroplasticity and dysfunction after gastrointestinal inflammation

Key Points

  • Gastrointestinal infection and inflammation are key risk factors for the development of numerous clinical gastrointestinal disorders that present with symptoms such as altered motility or secretion, abdominal discomfort and pain

  • Neuronal processing along the gut–brain axis is crucial for the function and modulation of key gastrointestinal processes; findings suggest that this processing can be altered by gut inflammation or infection

  • Inflammation or infection causes specific changes in enteric neuronal excitability, which can persist after inflammation has resolved; in some experimental models, inflammation also causes a rapid loss of myenteric neurons and viscerofugal neurons

  • Inflammation causes a specific hypersensitivity of visceromotor sympathetic neurons in prevertebral ganglia, which persists long after inflammation has resolved

  • Extrinsic gut sensory afferents express pronociceptive channels and receptors that can be activated in response to inflammatory and immune mediators, leading to acute neuronal hyperexcitability, visceral hypersensitivity and neurogenic inflammation

  • Inflammation causes lowering of mechanical activation thresholds of high-threshold or low-threshold afferents, which leads to hyperexcitability in afferent neuronal cell bodies, and increased activation of nociceptive pathways in the central nervous system

Abstract

The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural innervation and multiple levels of reflex control of gastrointestinal function.
Figure 2: Neuroplasticity in enteric neurons during and after gut inflammation.
Figure 3: Neuroplasticity in sympathetic neurons during and after gut inflammation.
Figure 4: Inflammation-induced neuroplasticity: contribution of neuroactive signalling molecules and the channels/receptors they act on.
Figure 5: Neuroplasticity in extrinsic sensory afferent pathways during and after resolution of gut inflammation.

Similar content being viewed by others

References

  1. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kiank, C., Tache, Y. & Larauche, M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors. Brain Behav. Immun. 24, 41–48 (2010).

    CAS  PubMed  Google Scholar 

  3. Larauche, M., Mulak, A. & Tache, Y. Stress and visceral pain: from animal models to clinical therapies. Exp. Neurol. 233, 49–67 (2012).

    PubMed  Google Scholar 

  4. Ohman, L. & Simren, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    PubMed  Google Scholar 

  5. Collins, S. M., Surette, M. & Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735–742 (2012).

    CAS  PubMed  Google Scholar 

  6. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    CAS  PubMed  Google Scholar 

  7. Zeltser, L. M., Seeley, R. J. & Tschop, M. H. Synaptic plasticity in neuronal circuits regulating energy balance. Nat. Neurosci. 15, 1336–1342 (2012).

    CAS  PubMed  Google Scholar 

  8. Hoogerwerf, W. A. Role of biological rhythms in gastrointestinal health and disease. Rev. Endocr. Metab. Disord. 10, 293–300 (2009).

    PubMed  Google Scholar 

  9. Cummings, D. E. & Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baumgart, D. C. & Sandborn, W. J. Crohn's disease. Lancet 380, 1590–1605 (2012).

    PubMed  Google Scholar 

  11. Colombel, J. F. et al. Infliximab, azathioprine, or combination therapy for Crohn's disease. N. Engl. J. Med. 362, 1383–1395 (2010).

    CAS  PubMed  Google Scholar 

  12. Mantzaris, G. J. et al. Azathioprine is superior to budesonide in achieving and maintaining mucosal healing and histologic remission in steroid-dependent Crohn's disease. Inflamm. Bowel Dis. 15, 375–382 (2009).

    PubMed  Google Scholar 

  13. Casellas, F. et al. Mucosal healing restores normal health and quality of life in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 24, 762–769 (2012).

    PubMed  Google Scholar 

  14. Higgins, P. D. et al. Patient defined dichotomous end points for remission and clinical improvement in ulcerative colitis. Gut 54, 782–788 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao, S. S., Read, N. W., Brown, C., Bruce, C. & Holdsworth, C. D. Studies on the mechanism of bowel disturbance in ulcerative colitis. Gastroenterology 93, 934–940 (1987).

    CAS  PubMed  Google Scholar 

  16. Bassotti, G. et al. Twenty-four-hour manometric study of colonic propulsive activity in patients with diarrhea due to inflammatory (ulcerative colitis) and non-inflammatory (irritable bowel syndrome) conditions. Int. J. Colorectal Dis. 19, 493–497 (2004).

    PubMed  Google Scholar 

  17. Kern, F. Jr, Almy, T. P., Abbot, F. K. & Bogdonoff, M. D. The motility of the distal colon in nonspecific ulcerative colitis. Gastroenterology 19, 492–503 (1951).

    PubMed  Google Scholar 

  18. Snape, W. J. Jr, Matarazzo, S. A. & Cohen, S. Abnormal gastrocolonic response in patients with ulcerative colitis. Gut 21, 392–396 (1980).

    PubMed  PubMed Central  Google Scholar 

  19. Koch, T. R., Carney, J. A., Go, V. L. & Szurszewski, J. H. Spontaneous contractions and some electrophysiologic properties of circular muscle from normal sigmoid colon and ulcerative colitis. Gastroenterology 95, 77–84 (1988).

    CAS  PubMed  Google Scholar 

  20. Reddy, S. N. et al. Colonic motility and transit in health and ulcerative colitis. Gastroenterology 101, 1289–1297 (1991).

    CAS  PubMed  Google Scholar 

  21. Odille, F. et al. Quantitative assessment of small bowel motility by nonrigid registration of dynamic MR images. Magn. Reson. Med. 68, 783–793 (2012).

    PubMed  Google Scholar 

  22. Tursi, A., Brandimarte, G., Giorgetti, G. & Nasi, G. Assessment of orocaecal transit time in different localization of Crohn's disease and its possible influence on clinical response to therapy. Eur. J. Gastroenterol. Hepatol. 15, 69–74 (2003).

    PubMed  Google Scholar 

  23. Keller, J., Beglinger, C., Holst, J. J., Andresen, V. & Layer, P. Mechanisms of gastric emptying disturbances in chronic and acute inflammation of the distal gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G861–G868 (2009).

    CAS  PubMed  Google Scholar 

  24. Nobrega, A. C. et al. Dyspeptic symptoms and delayed gastric emptying of solids in patients with inactive Crohn's disease. BMC Gastroenterol. 12, 175 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Mueller, M. H. et al. Anorectal functional disorders in the absence of anorectal inflammation in patients with Crohn's disease. Br. J. Surg. 89, 1027–1031 (2002).

    CAS  PubMed  Google Scholar 

  26. Bernstein, C. N. et al. Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 66, 151–161 (1996).

    CAS  PubMed  Google Scholar 

  27. Chrysos, E. et al. Rectoanal motility in Crohn's disease patients. Dis. Colon Rectum 44, 1509–1513 (2001).

    CAS  PubMed  Google Scholar 

  28. Kangas, E., Hiltunen, K. M. & Matikainen, M. Anorectal function in Crohn's disease. Ann. Chir. Gynaecol. 81, 43–47 (1992).

    CAS  PubMed  Google Scholar 

  29. Andersson, P., Olaison, G., Hallbook, O., Boeryd, B. & Sjodahl, R. Increased anal resting pressure and rectal sensitivity in Crohn's disease. Dis. Colon Rectum 46, 1685–1689 (2003).

    PubMed  Google Scholar 

  30. Loening-Baucke, V., Metcalf, A. M. & Shirazi, S. Rectosigmoid motility in patients with quiescent and active ulcerative colitis. Am. J. Gastroenterol. 84, 34–39 (1989).

    CAS  PubMed  Google Scholar 

  31. Bassotti, G. et al. Colonic propulsive and postprandial motor activity in patients with ulcerative colitis in remission. Eur. J. Gastroenterol. Hepatol. 18, 507–510 (2006).

    PubMed  Google Scholar 

  32. Annese, V. et al. Gastrointestinal motility disorders in patients with inactive Crohn's disease. Scand. J. Gastroenterol. 32, 1107–1117 (1997).

    CAS  PubMed  Google Scholar 

  33. Minderhoud, I. M., Smout, A. J., Oldenburg, B. & Samsom, M. A pilot study on chemospecific duodenal visceral sensitivity in inflammatory bowel disease in remission. Digestion 73, 151–159 (2006).

    PubMed  Google Scholar 

  34. Collins, S. M., Van Assche, G. & Hogaboam, C. Alterations in enteric nerve and smooth-muscle function in inflammatory bowel diseases. Inflamm. Bowel Dis. 3, 38–48 (1997).

    CAS  PubMed  Google Scholar 

  35. Geboes, K. & Collins, S. Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis. Neurogastroenterol. Motil. 10, 189–202 (1998).

    CAS  PubMed  Google Scholar 

  36. Belai, A., Boulos, P. B., Robson, T. & Burnstock, G. Neurochemical coding in the small intestine of patients with Crohn's disease. Gut 40, 767–774 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schneider, J. et al. Neurotransmitter coding of enteric neurones in the submucous plexus is changed in non-inflamed rectum of patients with Crohn's disease. Neurogastroenterol. Motil. 13, 255–264 (2001).

    CAS  PubMed  Google Scholar 

  38. Sjolund, K. et al. Peptide-containing nerve fibres in the gut wall in Crohn's disease. Gut 24, 724–733 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Todorovic, V. et al. Colonic vasoactive intestinal polypeptide (VIP) in ulcerative colitis—a radioimmunoassay and immunohistochemical study. Hepatogastroenterology 43, 483–488 (1996).

    CAS  PubMed  Google Scholar 

  40. Lee, C. M., Kumar, R. K., Lubowski, D. Z. & Burcher, E. Neuropeptides and nerve growth in inflammatory bowel diseases: a quantitative immunohistochemical study. Dig. Dis. Sci. 47, 495–502 (2002).

    CAS  PubMed  Google Scholar 

  41. Straub, R. H. et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57, 911–921 (2008).

    CAS  PubMed  Google Scholar 

  42. Dvorak, A. M., Osage, J. E., Monahan, R. A. & Dickersin, G. R. Crohn's disease: transmission electron microscopic studies. III. Target tissues. Proliferation of and injury to smooth muscle and the autonomic nervous system. Hum. Pathol. 11, 620–634 (1980).

    CAS  PubMed  Google Scholar 

  43. Oehmichen, M. & Reifferscheid, P. Intramural ganglion cell degeneration in inflammatory bowel disease. Digestion 15, 482–496 (1977).

    CAS  PubMed  Google Scholar 

  44. Roberts, P. J., Morgan, K., Miller, R., Hunter, J. O. & Middleton, S. J. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut 48, 468–472 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nadorra, R., Landing, B. H. & Wells, T. R. Intestinal plexuses in Crohn's disease and ulcerative colitis in children: pathologic and microdissection studies. Pediatr. Pathol. 6, 267–287 (1986).

    CAS  PubMed  Google Scholar 

  46. Strobach, R. S., Ross, A. H., Markin, R. S., Zetterman, R. K. & Linder, J. Neural patterns in inflammatory bowel disease: an immunohistochemical survey. Mod. Pathol. 3, 488–493 (1990).

    CAS  PubMed  Google Scholar 

  47. Neunlist, M. et al. Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52, 84–90 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gulbransen, B. D. et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat. Med. 18, 600–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bassotti, G. et al. Enteric neuroglial apoptosis in inflammatory bowel diseases. J. Crohns Colitis 3, 264–270 (2009).

    PubMed  Google Scholar 

  50. Geboes, K. et al. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology 103, 439–447 (1992).

    CAS  PubMed  Google Scholar 

  51. Koretz, K., Momburg, F., Otto, H. F. & Moller, P. Sequential induction of MHC antigens on autochthonous cells of ileum affected by Crohn's disease. Am. J. Pathol. 129, 493–502 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohlsson, B., Sundkvist, G. & Lindgren, S. Subclinical sympathetic neuropathy appears early in the course of Crohn's disease. BMC Gastroenterol. 7, 33 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Ferrante, M. et al. The value of myenteric plexitis to predict early postoperative Crohn's disease recurrence. Gastroenterology 130, 1595–1606 (2006).

    PubMed  Google Scholar 

  54. Sokol, H. et al. Plexitis as a predictive factor of early postoperative clinical recurrence in Crohn's disease. Gut 58, 1218–1225 (2009).

    CAS  PubMed  Google Scholar 

  55. Rao, S. S., Read, N. W., Davison, P. A., Bannister, J. J. & Holdsworth, C. D. Anorectal sensitivity and responses to rectal distention in patients with ulcerative colitis. Gastroenterology 93, 1270–1275 (1987).

    CAS  PubMed  Google Scholar 

  56. Farthing, M. J. & Lennard-Jones, J. E. Sensibility of the rectum to distension and the anorectal distension reflex in ulcerative colitis. Gut 19, 64–69 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Drewes, A. M. et al. Pain and mechanical properties of the rectum in patients with active ulcerative colitis. Inflamm. Bowel Dis. 12, 294–303 (2006).

    PubMed  Google Scholar 

  58. Buchmann, P., Kolb, E. & Alexander-Williams, J. Pathogenesis of urgency in defaecation in Crohn's disease. Digestion 22, 310–316 (1981).

    CAS  PubMed  Google Scholar 

  59. Docherty, M. J., Jones, R. C. 3rd & Wallace, M. S. Managing pain in inflammatory bowel disease. Gastroenterol. Hepatol. (NY) 7, 592–601 (2011).

    Google Scholar 

  60. Schirbel, A. et al. Impact of pain on health-related quality of life in patients with inflammatory bowel disease. World J. Gastroenterol. 16, 3168–3177 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Greenley, R. N., Kunz, J. H., Schurman, J. V. & Swanson, E. Abdominal pain and health related quality of life in pediatric inflammatory bowel disease. J. Pediatr. Psychol. 38, 63–71 (2013).

    PubMed  Google Scholar 

  62. Wagtmans, M. J., Verspaget, H. W., Lamers, C. B. & van Hogezand, R. A. Crohn's disease in the elderly: a comparison with young adults. J. Clin. Gastroenterol. 27, 129–133 (1998).

    CAS  PubMed  Google Scholar 

  63. Ibeakanma, C. & Vanner, S. TNFalpha is a key mediator of the pronociceptive effects of mucosal supernatant from human ulcerative colitis on colonic DRG neurons. Gut 59, 612–621 (2010).

    CAS  PubMed  Google Scholar 

  64. Farrokhyar, F., Marshall, J. K., Easterbrook, B. & Irvine, E. J. Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: prevalence and impact on health. Inflamm. Bowel Dis. 12, 38–46 (2006).

    PubMed  Google Scholar 

  65. Minderhoud, I. M., Oldenburg, B., Wismeijer, J. A., van Berge Henegouwen, G. P. & Smout, A. J. IBS-like symptoms in patients with inflammatory bowel disease in remission; relationships with quality of life and coping behavior. Dig. Dis. Sci. 49, 469–474 (2004).

    PubMed  Google Scholar 

  66. Loening-Baucke, V., Metcalf, A. M. & Shirazi, S. Anorectal manometry in active and quiescent ulcerative colitis. Am. J. Gastroenterol. 84, 892–897 (1989).

    CAS  PubMed  Google Scholar 

  67. Mayer, E. A. et al. Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409 (2005).

    PubMed  Google Scholar 

  68. Furlan, R. et al. Sympathetic overactivity in active ulcerative colitis: effects of clonidine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R224–R232 (2006).

    CAS  PubMed  Google Scholar 

  69. Ganguli, S. C. et al. A comparison of autonomic function in patients with inflammatory bowel disease and in healthy controls. Neurogastroenterol. Motil. 19, 961–967 (2007).

    CAS  PubMed  Google Scholar 

  70. Straub, R. H. et al. Association of autonomic nervous hyperreflexia and systemic inflammation in patients with Crohn's disease and ulcerative colitis. J. Neuroimmunol. 80, 149–157 (1997).

    CAS  PubMed  Google Scholar 

  71. Lechin, F. et al. Treatment of ulcerative colitis with clonidine. J. Clin. Pharmacol. 25, 219–226 (1985).

    CAS  PubMed  Google Scholar 

  72. Mouzas, I. A. et al. Autonomic imbalance during the day in patients with inflammatory bowel disease in remission. Evidence from spectral analysis of heart rate variability over 24 hours. Dig. Liver Dis. 34, 775–780 (2002).

    CAS  PubMed  Google Scholar 

  73. Sharma, P., Makharia, G. K., Ahuja, V., Dwivedi, S. N. & Deepak, K. K. Autonomic dysfunctions in patients with inflammatory bowel disease in clinical remission. Dig. Dis. Sci. 54, 853–861 (2009).

    PubMed  Google Scholar 

  74. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721 (2012).

    PubMed  Google Scholar 

  75. Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).

    CAS  PubMed  Google Scholar 

  76. Berman, S. et al. Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. Neuroimage 63, 1854–1863 (2012).

    CAS  PubMed  Google Scholar 

  77. Bercik, P., Verdu, E. F. & Collins, S. M. Is irritable bowel syndrome a low-grade inflammatory bowel disease? Gastroenterol. Clin. North. Am 34, 235–245 (2005).

    PubMed  Google Scholar 

  78. Spiller, R. C. Inflammation as a basis for functional GI disorders. Best Pract. Res. Clin. Gastroenterol. 18, 641–661 (2004).

    CAS  PubMed  Google Scholar 

  79. Peters, G. A. & Bargen, J. A. The irritable bowel syndrome. Gastroenterology 3, 399–402 (1944).

    Google Scholar 

  80. Barratt, S. M. et al. Prodromal irritable bowel syndrome may be responsible for delays in diagnosis in patients presenting with unrecognized Crohn's disease and celiac disease, but not ulcerative colitis. Dig. Dis. Sci. 56, 3270–3275 (2011).

    CAS  PubMed  Google Scholar 

  81. Burgmann, T. et al. The Manitoba Inflammatory Bowel Disease Cohort Study: prolonged symptoms before diagnosis—how much is irritable bowel syndrome? Clin. Gastroenterol. Hepatol. 4, 614–620 (2006).

    PubMed  Google Scholar 

  82. Ansari, R. et al. Ulcerative colitis and irritable bowel syndrome: relationships with quality of life. Eur. J. Gastroenterol. Hepatol. 20, 46–50 (2008).

    PubMed  Google Scholar 

  83. Olbe, L. Concept of Crohn's disease being conditioned by four main components, and irritable bowel syndrome being an incomplete Crohn's disease. Scand. J. Gastroenterol. 43, 234–241 (2008).

    PubMed  Google Scholar 

  84. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  85. Bertiaux-Vandaele, N. et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol. 106, 2165–2173 (2011).

    CAS  PubMed  Google Scholar 

  86. Dunlop, S. P. et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 101, 1288–1294 (2006).

    PubMed  Google Scholar 

  87. Hughes, P. A. et al. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am. J. Gastroenterol. 108, 1066–1074 (2013).

    CAS  PubMed  Google Scholar 

  88. Donovan, J. & Grundy, D. Endocannabinoid modulation of jejunal afferent responses to LPS. Neurogastroenterol. Motil. 24, 956–e465 (2012).

    CAS  PubMed  Google Scholar 

  89. Ochoa-Cortes, F. et al. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G723–G732 (2010).

    CAS  PubMed  Google Scholar 

  90. Wang, B. et al. Lipopolysaccharide-induced changes in mesenteric afferent sensitivity of rat jejunum in vitro: role of prostaglandins. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G254–G260 (2005).

    CAS  PubMed  Google Scholar 

  91. Liu, C. Y., Mueller, M. H., Rogler, G., Grundy, D. & Kreis, M. E. Differential afferent sensitivity to mucosal lipopolysaccharide from Salmonella typhimurium and Escherichia coli in the rat jejunum. Neurogastroenterol. Motil. 21, 1335–e129 (2009).

    CAS  PubMed  Google Scholar 

  92. Barbara, G. et al. Postinfectious irritable bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 48 (Suppl. 2), S95–S97 (2009).

    CAS  PubMed  Google Scholar 

  93. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    PubMed  Google Scholar 

  94. Thabane, M. & Marshall, J. K. Post-infectious irritable bowel syndrome. World J. Gastroenterol. 15, 3591–3596 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Barbara, G., De Giorgio, R., Stanghellini, V., Cremon, C. & Corinaldesi, R. A role for inflammation in irritable bowel syndrome? Gut 51 (Suppl. 1), 41–44 (2002).

    Google Scholar 

  96. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    PubMed  Google Scholar 

  97. Hughes, P. A. et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62, 1456–1465 (2013).

    CAS  PubMed  Google Scholar 

  98. Liebregts, T. et al. Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am. J. Gastroenterol. 106, 1089–1098 (2011).

    CAS  PubMed  Google Scholar 

  99. Liebregts, T. et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 132, 913–920 (2007).

    CAS  PubMed  Google Scholar 

  100. Ohman, L. et al. T-cell activation in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 1205–1212 (2009).

    PubMed  Google Scholar 

  101. Lindberg, G. et al. Full-thickness biopsy findings in chronic intestinal pseudo-obstruction and enteric dysmotility. Gut 58, 1084–1090 (2009).

    CAS  PubMed  Google Scholar 

  102. Ohlsson, B., Ekblad, E., Veress, B., Montgomery, A. & Janciauskiene, S. Antibodies against gonadotropin-releasing hormone (GnRH) and destruction of enteric neurons in 3 patients suffering from gastrointestinal dysfunction. BMC Gastroenterol. 10, 48 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Gwee, K. A. et al. Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut 52, 523–526 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chadwick, V. S. et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 122, 1778–1783 (2002).

    PubMed  Google Scholar 

  105. Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    CAS  PubMed  Google Scholar 

  106. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    CAS  PubMed  Google Scholar 

  107. Gonsalkorale, W. M., Perrey, C., Pravica, V., Whorwell, P. J. & Hutchinson, I. V. Interleukin 10 genotypes in irritable bowel syndrome: evidence for an inflammatory component? Gut 52, 91–93 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shea-Donohue, T., Notari, L., Sun, R. & Zhao, A. Mechanisms of smooth muscle responses to inflammation. Neurogastroenterol. Motil. 24, 802–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Crosthwaite, A. I., Huizinga, J. D. & Fox, J. A. Jejunal circular muscle motility is decreased in nematode-infected rat. Gastroenterology 98, 59–65 (1990).

    CAS  PubMed  Google Scholar 

  110. Grossi, L., McHugh, K. & Collins, S. M. On the specificity of altered muscle function in experimental colitis in rats. Gastroenterology 104, 1049–1056 (1993).

    CAS  PubMed  Google Scholar 

  111. Jodal, M., Wingren, U., Jansson, M., Heidemann, M. & Lundgren, O. Nerve involvement in fluid transport in the inflamed rat jejunum. Gut 34, 1526–1530 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vermillion, D. L. & Collins, S. M. Increased responsiveness of jejunal longitudinal muscle in Trichinella-infected rats. Am. J. Physiol. 254, G124–G129 (1988).

    CAS  PubMed  Google Scholar 

  113. Hosseini, J. M., Goldhill, J. M., Bossone, C., Pineiro-Carrero, V. & Shea-Donohue, T. Progressive alterations in circular smooth muscle contractility in TNBS-induced colitis in rats. Neurogastroenterol. Motil. 11, 347–356 (1999).

    CAS  PubMed  Google Scholar 

  114. Martinolle, J. P., Garcia-Villar, R., Fioramonti, J. & Bueno, L. Altered contractility of circular and longitudinal muscle in TNBS-inflamed guinea pig ileum. Am. J. Physiol. 272, G1258–G1267 (1997).

    CAS  PubMed  Google Scholar 

  115. Moreels, T. G. et al. Effect of 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced ileitis on the motor function of non-inflamed rat gastric fundus. Neurogastroenterol. Motil. 13, 339–352 (2001).

    CAS  PubMed  Google Scholar 

  116. Strong, D. S. et al. Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J. Physiol. 588, 847–859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Perdue, M. H., Marshall, J. & Masson, S. Ion transport abnormalities in inflamed rat jejunum. Involvement of mast cells and nerves. Gastroenterology 98, 561–567 (1990).

    CAS  PubMed  Google Scholar 

  118. Masson, S. D. et al. Nippostrongylus brasiliensis infection evokes neuronal abnormalities and alterations in neurally regulated electrolyte transport in rat jejunum. Parasitology 113, 173–182 (1996).

    PubMed  Google Scholar 

  119. Sanchez de Medina, F. et al. Disturbances of colonic ion secretion in inflammation: role of the enteric nervous system and cAMP. Pflugers Arch. 444, 378–388 (2002).

    CAS  PubMed  Google Scholar 

  120. MacNaughton, W. K., Lowe, S. S. & Cushing, K. Role of nitric oxide in inflammation-induced suppression of secretion in a mouse model of acute colitis. Am. J. Physiol. 275, G1353–G1360 (1998).

    CAS  PubMed  Google Scholar 

  121. Perez-Navarro, R., Ballester, I., Zarzuelo, A. & Sanchez de Medina, F. Disturbances in epithelial ionic secretion in different experimental models of colitis. Life Sci. 76, 1489–1501 (2005).

    CAS  PubMed  Google Scholar 

  122. Motomura, Y. et al. Mechanisms underlying gut dysfunction in a murine model of chronic parasitic infection. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1354–G1360 (2010).

    CAS  PubMed  Google Scholar 

  123. Bercik, P. et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 127, 179–187 (2004).

    PubMed  Google Scholar 

  124. Krauter, E. M. et al. Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterol. Motil. 19, 990–1000 (2007).

    CAS  PubMed  Google Scholar 

  125. Lomax, A. E., O'Hara, J. R., Hyland, N. P., Mawe, G. M. & Sharkey, K. A. Persistent alterations to enteric neural signaling in the guinea pig colon following the resolution of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G482–G491 (2007).

    CAS  PubMed  Google Scholar 

  126. Van Nassauw, L., Bogers, J., Van Marck, E. & Timmermans, J. P. Role of reactive nitrogen species in neuronal cell damage during intestinal schistosomiasis. Cell Tissue Res. 303, 329–336 (2001).

    CAS  PubMed  Google Scholar 

  127. Demedts, I. et al. Neural mechanisms of early postinflammatory dysmotility in rat small intestine. Neurogastroenterol. Motil. 18, 1102–1111 (2006).

    CAS  PubMed  Google Scholar 

  128. Bradley, J. S. Jr, Parr, E. J. & Sharkey, K. A. Effects of inflammation on cell proliferation in the myenteric plexus of the guinea-pig ileum. Cell Tissue Res. 289, 455–461 (1997).

    PubMed  Google Scholar 

  129. Poli, E., Lazzaretti, M., Grandi, D., Pozzoli, C. & Coruzzi, G. Morphological and functional alterations of the myenteric plexus in rats with TNBS-induced colitis. Neurochem. Res. 26, 1085–1093 (2001).

    CAS  PubMed  Google Scholar 

  130. Sarnelli, G. et al. Myenteric neuronal loss in rats with experimental colitis: role of tissue transglutaminase-induced apoptosis. Dig. Liver Dis. 41, 185–193 (2009).

    CAS  PubMed  Google Scholar 

  131. Linden, D. R. et al. Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol. Motil. 17, 751–760 (2005).

    CAS  PubMed  Google Scholar 

  132. Boyer, L. et al. Myenteric plexus injury and apoptosis in experimental colitis. Auton. Neurosci. 117, 41–53 (2005).

    CAS  PubMed  Google Scholar 

  133. Linden, D. R. Colitis is associated with a loss of intestinofugal neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1096–G1104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Margolis, K. G. et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141, 588–598 (2011).

    PubMed  Google Scholar 

  135. Mya, G. H., Ng, W. F., Cheng, W. & Saing, H. Colonic hyperganglionosis presenting as neonatal enterocolitis and multiple strictures. J. Pediatr. Surg. 29, 1628–1630 (1994).

    CAS  PubMed  Google Scholar 

  136. Linden, D. R., Sharkey, K. A. & Mawe, G. M. Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J. Physiol. 547, 589–601 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, Z. et al. Cyclic AMP signaling contributes to neural plasticity and hyperexcitability in AH sensory neurons following intestinal Trichinella spiralis-induced inflammation. Int. J. Parasitol. 37, 743–761 (2007).

    CAS  PubMed  Google Scholar 

  138. Linden, D. R., Sharkey, K. A., Ho, W. & Mawe, G. M. Cyclooxygenase-2 contributes to dysmotility and enhanced excitability of myenteric AH neurones in the inflamed guinea pig distal colon. J. Physiol. 557, 191–205 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Krauter, E. M., Linden, D. R., Sharkey, K. A. & Mawe, G. M. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. J. Physiol. 581, 787–800 (2007).

    PubMed  PubMed Central  Google Scholar 

  140. Lomax, A. E., Mawe, G. M. & Sharkey, K. A. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J. Physiol. 564, 863–875 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Blandizzi, C. et al. Altered prejunctional modulation of intestinal cholinergic and noradrenergic pathways by α2-adrenoceptors in the presence of experimental colitis. Br. J. Pharmacol. 139, 309–320 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Collins, S. M., Blennerhassett, P. A., Blennerhassett, M. G. & Vermillion, D. L. Impaired acetylcholine release from the myenteric plexus of Trichinella-infected rats. Am. J. Physiol. 257, G898–G903 (1989).

    CAS  PubMed  Google Scholar 

  143. Hoffman, J. M., McKnight, N. D., Sharkey, K. A. & Mawe, G. M. The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon. Neurogastroenterol. Motil. 23, 673–e279 (2011).

    CAS  PubMed  Google Scholar 

  144. Nurgali, K. et al. Morphological and functional changes in guinea-pig neurons projecting to the ileal mucosa at early stages after inflammatory damage. J. Physiol. 589, 325–339 (2011).

    CAS  PubMed  Google Scholar 

  145. O'Hara, J. R., Lomax, A. E., Mawe, G. M. & Sharkey, K. A. Ileitis alters neuronal and enteroendocrine signalling in guinea pig distal colon. Gut 56, 186–194 (2007).

    CAS  PubMed  Google Scholar 

  146. Hons, I. M., Burda, J. E., Grider, J. R., Mawe, G. M. & Sharkey, K. A. Alterations to enteric neural signaling underlie secretory abnormalities of the ileum in experimental colitis in the guinea pig. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G717–G726 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Linden, D. R. Enhanced excitability of guinea pig ileum myenteric AH neurons during and following recovery from chemical colitis. Neurosci. Lett. 545, 91–95 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jacobson, K., McHugh, K. & Collins, S. M. The mechanism of altered neural function in a rat model of acute colitis. Gastroenterology 112, 156–162 (1997).

    CAS  PubMed  Google Scholar 

  149. Motagally, M. A., Neshat, S. & Lomax, A. E. Inhibition of sympathetic N-type voltage-gated Ca2+ current underlies the reduction in norepinephrine release during colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1077–G1084 (2009).

    CAS  PubMed  Google Scholar 

  150. Birch, D., Knight, G. E., Boulos, P. B. & Burnstock, G. Analysis of innervation of human mesenteric vessels in non-inflamed and inflamed bowel—a confocal and functional study. Neurogastroenterol. Motil. 20, 660–670 (2008).

    CAS  PubMed  Google Scholar 

  151. Lomax, A. E., O'Reilly, M., Neshat, S. & Vanner, S. J. Sympathetic vasoconstrictor regulation of mouse colonic submucosal arterioles is altered in experimental colitis. J. Physiol. 583, 719–730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mathison, R. & Davison, J. S. Capsaicin sensitive nerves in the jejunum of Nippostrongylus brasiliensis-sensitized rats participate in a cardiovascular depressor reflex. Naunyn Schmiedebergs Arch. Pharmacol. 348, 638–642 (1993).

    CAS  PubMed  Google Scholar 

  153. Mathison, R. & Davison, J. S. Regulation of jejunal arterioles by capsaicin-sensitive nerves in Nippostrongylus brasiliensis-sensitized rats. J. Pharmacol. Exp. Ther. 273, 337–343 (1995).

    CAS  PubMed  Google Scholar 

  154. Neshat, S. et al. Loss of purinergic vascular regulation in the colon during colitis is associated with upregulation of CD39. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G399–G405 (2009).

    CAS  PubMed  Google Scholar 

  155. Linden, D. R. Enhanced excitability of guinea pig inferior mesenteric ganglion neurons during and following recovery from chemical colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1067–G1075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Dong, X. X., Thacker, M., Pontell, L., Furness, J. B. & Nurgali, K. Effects of intestinal inflammation on specific subgroups of guinea-pig celiac ganglion neurons. Neurosci. Lett. 444, 231–235 (2008).

    CAS  PubMed  Google Scholar 

  157. Castex, N. et al. Brain Fos expression and intestinal motor alterations during nematode-induced inflammation in the rat. Am. J. Physiol. 274, G210–G216 (1998).

    CAS  PubMed  Google Scholar 

  158. Holzer, P. et al. Increase in gastric acid-induced afferent input to the brainstem in mice with gastritis. Neuroscience 145, 1108–1119 (2007).

    CAS  PubMed  Google Scholar 

  159. Wultsch, T. et al. Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach–brainstem axis. Pain 134, 245–253 (2008).

    CAS  PubMed  Google Scholar 

  160. Ghia, J. E., Blennerhassett, P. & Collins, S. M. Vagus nerve integrity and experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G560–G567 (2007).

    CAS  PubMed  Google Scholar 

  161. Ghia, J. E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E. F. & Collins, S. M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    PubMed  Google Scholar 

  162. Matteoli, G. & Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. Gut 62, 1214–1222 (2013).

    CAS  PubMed  Google Scholar 

  163. Page, A. J., O'Donnell, T. A. & Blackshaw, L. A. P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J. Physiol. 523, 403–411 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu, S. & Ouyang, A. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G1052–G1058 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu, S., Gao, G., Peterson, B. Z. & Ouyang, A. TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G34–G42 (2009).

    CAS  PubMed  Google Scholar 

  166. Kang, Y. M., Bielefeldt, K. & Gebhart, G. F. Sensitization of mechanosensitive gastric vagal afferent fibers in the rat by thermal and chemical stimuli and gastric ulcers. J. Neurophysiol. 91, 1981–1989 (2004).

    CAS  PubMed  Google Scholar 

  167. Hughes, P. A. et al. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58, 1333–1341 (2009).

    CAS  PubMed  Google Scholar 

  168. De Schepper, H. U. et al. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J. Physiol. 586, 5247–5258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Castro, J. et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-c and extracellular cyclic guanosine 3′, 5′-monophosphate. Gastroenterology 145, 1334–1346 (2013).

    CAS  PubMed  Google Scholar 

  170. Jones, R. C. 3rd, Xu, L. & Gebhart, G. F. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981–10989 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Brierley, S. M. et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084–2095 (2009).

    CAS  PubMed  Google Scholar 

  172. Cattaruzza, F. et al. Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G81–G91 (2010).

    CAS  PubMed  Google Scholar 

  173. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    CAS  PubMed  Google Scholar 

  174. Sipe, W. E. et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1288–G1298 (2008).

    CAS  PubMed  Google Scholar 

  175. Jones, R. C. 3rd et al. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology 133, 184–194 (2007).

    PubMed  Google Scholar 

  176. Miranda, A. et al. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 148, 1021–1032 (2007).

    CAS  PubMed  Google Scholar 

  177. Brierley, S. M., Jones, R. C. 3rd, Xu, L., Gebhart, G. F. & Blackshaw, L. A. Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol. Motil. 17, 854–862 (2005).

    CAS  PubMed  Google Scholar 

  178. Coldwell, J. R., Phillis, B. D., Sutherland, K., Howarth, G. S. & Blackshaw, L. A. Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J. Physiol. 579, 203–213 (2007).

    CAS  PubMed  Google Scholar 

  179. Cenac, N. et al. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut 59, 481–488 (2010).

    CAS  PubMed  Google Scholar 

  180. Cattaruzza, F. et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141, 1864–1874 (2011).

    CAS  PubMed  Google Scholar 

  181. Engel, M. A. et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology 141, 1346–1358 (2011).

    CAS  PubMed  Google Scholar 

  182. Vergnolle, N. et al. A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br. J. Pharmacol. 159, 1161–1173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. D'Aldebert, E. et al. Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 140, 275–285 (2011).

    CAS  PubMed  Google Scholar 

  184. Brierley, S. M. et al. Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J. Physiol. 567, 267–281 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Feng, B. et al. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G676–G683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bielefeldt, K., Ozaki, N. & Gebhart, G. F. Experimental ulcers alter voltage-sensitive sodium currents in rat gastric sensory neurons. Gastroenterology 122, 394–405 (2002).

    CAS  PubMed  Google Scholar 

  187. Dang, K., Bielefeldt, K. & Gebhart, G. F. Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G573–G579 (2004).

    CAS  PubMed  Google Scholar 

  188. Hillsley, K. et al. Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. J. Physiol. 576, 257–267 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Stewart, T., Beyak, M. J. & Vanner, S. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J. Physiol. 552, 797–807 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Beyak, M. J., Ramji, N., Krol, K. M., Kawaja, M. D. & Vanner, S. J. Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G845–G855 (2004).

    CAS  PubMed  Google Scholar 

  191. Ibeakanma, C. et al. Citrobacter rodentium colitis evokes post-infectious hyperexcitability of mouse nociceptive colonic dorsal root ganglion neurons. J. Physiol. 587, 3505–3521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. King, D. E., Macleod, R. J. & Vanner, S. J. Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons. Neurogastroenterol. Motil. 21, 880–e64 (2009).

    CAS  PubMed  Google Scholar 

  193. Ozaki, N., Bielefeldt, K., Sengupta, J. N. & Gebhart, G. F. Models of gastric hyperalgesia in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G666–G676 (2002).

    CAS  PubMed  Google Scholar 

  194. Traub, R. J. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain. Neuroreport 11, 2113–2116 (2000).

    CAS  PubMed  Google Scholar 

  195. Traub, R. J. & Murphy, A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain 95, 93–102 (2002).

    CAS  PubMed  Google Scholar 

  196. Aerssens, J. et al. Alterations in the brain-gut axis underlying visceral chemosensitivity in Nippostrongylus brasiliensis-infected mice. Gastroenterology 132, 1375–1387 (2007).

    CAS  PubMed  Google Scholar 

  197. Rong, W., Keating, C., Sun, B., Dong, L. & Grundy, D. Purinergic contribution to small intestinal afferent hypersensitivity in a murine model of postinfectious bowel disease. Neurogastroenterol. Motil. 21, 665–671 (2009).

    CAS  PubMed  Google Scholar 

  198. Keating, C. et al. Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction: role of altered serotonin metabolism. J. Physiol. 586, 4517–4530 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Keating, C., Pelegrin, P., Martinez, C. M. & Grundy, D. P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J. Immunol. 187, 1467–1474 (2011).

    CAS  PubMed  Google Scholar 

  200. Traub, R. J. et al. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 135, 2075–2083 (2008).

    CAS  PubMed  Google Scholar 

  201. Adam, B. et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123, 179–186 (2006).

    PubMed  Google Scholar 

  202. Marshall, J. K. et al. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut 59, 605–611 (2010).

    PubMed  Google Scholar 

  203. Gschossmann, J. M. et al. Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig. Dis. Sci. 49, 96–101 (2004).

    CAS  PubMed  Google Scholar 

  204. Lamb, K., Zhong, F., Gebhart, G. F. & Bielefeldt, K. Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G451–G457 (2006).

    CAS  PubMed  Google Scholar 

  205. Harrington, A. M. et al. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J. Comp. Neurol. 520, 2241–2255 (2012).

    CAS  PubMed  Google Scholar 

  206. Hughes, P. A. et al. Increased kappa-opioid receptor expression and function during chronic visceral hypersensitivity. Gut http://dx.doi.org/10.1136/gutjnl-2013-306240.

  207. de Araujo, A. D. et al. Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat. Commun. 5, 3165 (2014).

    PubMed  Google Scholar 

  208. Larsson, M. H., Rapp, L. & Lindstrom, E. Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol. Motil. 18, 144–152 (2006).

    CAS  PubMed  Google Scholar 

  209. Verma-Gandhu, M. et al. Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56, 358–364 (2007).

    CAS  PubMed  Google Scholar 

  210. Valdez-Morales, E. et al. Release of endogenous opioids during a chronic IBD model suppresses the excitability of colonic DRG neurons. Neurogastroenterol. Motil. 25, 39–46 (2013).

    CAS  PubMed  Google Scholar 

  211. Eijkelkamp, N. et al. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G749–G757 (2007).

    CAS  PubMed  Google Scholar 

  212. Matsumoto, K. et al. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice. Lab. Invest. 92, 769–782 (2012).

    CAS  PubMed  Google Scholar 

  213. Shinoda, M., La, J. H., Bielefeldt, K. & Gebhart, G. F. Altered purinergic signaling in colorectal dorsal root ganglion neurons contributes to colorectal hypersensitivity. J. Neurophysiol. 104, 3113–3123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Ibeakanma, C. et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 141, 2098–2108 (2011).

    CAS  PubMed  Google Scholar 

  215. Liebregts, T. et al. Psychological stress and the severity of post-inflammatory visceral hyperalgesia. Eur. J. Pain 11, 216–222 (2007).

    PubMed  Google Scholar 

  216. Yang, C. Q., Wei, Y. Y., Zhong, C. J. & Duan, L. P. Essential role of mast cells in the visceral hyperalgesia induced by T. spiralis infection and stress in rats. Mediators Inflamm. 2012, 294070 (2012).

    PubMed  PubMed Central  Google Scholar 

  217. Yang, C. Q. et al. Vesicular glutamate transporter-3 contributes to visceral hyperalgesia induced by Trichinella spiralis infection in rats. Dig. Dis. Sci. 57, 865–872 (2012).

    CAS  PubMed  Google Scholar 

  218. Larsson, M. H., Miketa, A. & Martinez, V. Lack of interaction between psychological stress and DSS-induced colitis affecting colonic sensitivity during colorectal distension in mice. Stress 12, 434–444 (2009).

    CAS  PubMed  Google Scholar 

  219. Winston, J., Shenoy, M., Medley, D., Naniwadekar, A. & Pasricha, P. J. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 132, 615–627 (2007).

    CAS  PubMed  Google Scholar 

  220. Christianson, J. A., Bielefeldt, K., Malin, S. A. & Davis, B. M. Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain 151, 540–549 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Xu, G. Y., Shenoy, M., Winston, J. H., Mittal, S. & Pasricha, P. J. P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57, 1230–1237 (2008).

    CAS  PubMed  Google Scholar 

  222. Liu, L. S. et al. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology 134, 2070–2079 (2008).

    PubMed  Google Scholar 

  223. Liu, L. S., Shenoy, M. & Pasricha, P. J. The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol. Motil. 23, 356–361 (2011).

    CAS  PubMed  Google Scholar 

  224. Winston, J. H. & Sarna, S. K. Developmental origins of functional dyspepsia-like gastric hypersensitivity in rats. Gastroenterology 144, 570–579 (2013).

    CAS  PubMed  Google Scholar 

  225. Larson, S. J., Collins, S. M. & Weingarten, H. P. Dissociation of temperature changes and anorexia after experimental colitis and LPS administration in rats. Am. J. Physiol. 271, R967–R972 (1996).

    CAS  PubMed  Google Scholar 

  226. McHugh, K. J., Weingarten, H. P., Keenan, C., Wallace, J. L. & Collins, S. M. On the suppression of food intake in experimental models of colitis in the rat. Am. J. Physiol. 264, R871–R876 (1993).

    CAS  PubMed  Google Scholar 

  227. Lyte, M., Li, W., Opitz, N., Gaykema, R. P. & Goehler, L. E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89, 350–357 (2006).

    CAS  PubMed  Google Scholar 

  228. Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139, 2102–2112 (2010).

    CAS  PubMed  Google Scholar 

  229. Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).

    PubMed  Google Scholar 

  230. Bercik, P. et al. Role of gut–brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R587–R594 (2009).

    CAS  PubMed  Google Scholar 

  231. McHugh, K. J., Collins, S. M. & Weingarten, H. P. Central interleukin-1 receptors contribute to suppression of feeding after acute colitis in the rat. Am. J. Physiol. 266, R1659–R1663 (1994).

    CAS  PubMed  Google Scholar 

  232. De Schepper, H. U. et al. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G245–G253 (2008).

    CAS  PubMed  Google Scholar 

  233. Hong, S. et al. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 58, 202–210 (2009).

    CAS  PubMed  Google Scholar 

  234. Karanjia, R., Spreadbury, I., Bautista-Cruz, F., Tsang, M. E. & Vanner, S. Activation of protease-activated receptor-4 inhibits the intrinsic excitability of colonic dorsal root ganglia neurons. Neurogastroenterol. Motil. 21, 1218–1221 (2009).

    CAS  PubMed  Google Scholar 

  235. Harrington, A. M. et al. A novel role for TRPM8 in visceral afferent function. Pain 152, 1459–1468 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Applequist at the Mayo Clinic College of Medicine and J. Maddern at the University of Adelaide, Australia, for their secretarial assistance. S.M.B. is supported by an NHMRC R.D. Wright Biomedical Fellowship and by NHMRC Australia Project grants (1008100, 1049682, 1049928 and 1063803). D.R.L. is supported by NIH grant DK76665.

Author information

Authors and Affiliations

Authors

Contributions

S.M.B. and D.R.L. contributed equally to the discussion of content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Stuart M. Brierley.

Ethics declarations

Competing interests

S.M.B. receives research support from Ironwood Pharmaceuticals Inc. None of the details relating to this research support are discussed in this review. D.R.L. declares no competing interests.

Supplementary information

Supplementary Box 1

Other clinical gastrointestinal inflammatory disorders causing gut dysfunction (PDF 447 kb)

Supplementary Box 2

Non-neuronal influences on gastrointestinal function (PDF 287 kb)

Supplementary Table 1

Animal models of gastrointestinal infection/inflammation and the neuroplasticity and altered gut function they induce (PDF 198 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brierley, S., Linden, D. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 11, 611–627 (2014). https://doi.org/10.1038/nrgastro.2014.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.103

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research