Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells

Abstract

CD4+ T helper 1 (TH1) and TH2 cells have long been regarded as two sides of a coin in terms of adaptive immune responses. However, as I discuss here, this concept needs to be reconsidered. In particular, recent data indicate that interleukin-17 (IL-17) is produced by TH cells that are distinct from the traditional TH1- and TH2-cell subsets. Furthermore, the generation of these IL-17-producing CD4+ T cells from naive precursors during immune responses is not dependent on the cytokines and transcription factors that mediate TH1- and TH2-cell development. Given that IL-17 has crucial roles in regulating tissue inflammation and the development of disease in several animal models of autoimmunity, I propose that IL-17-producing CD4+ T cells represent a distinct inflammatory TH-cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of T-helper-1 and T-helper-2-cell-differentiation programmes.
Figure 2: A revised T-helper-cell-differentiation model.

Similar content being viewed by others

References

  1. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  4. Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ho, I. C., Hodge, M. R., Rooney, J. W. & Glimcher, L. H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Chu, C.-Q., Wittmer, S. & Dalton, D. K. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manoury-Schwartz, B. et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-γ receptors. J. Immunol. 158, 5501–5506 (1997).

    CAS  PubMed  Google Scholar 

  9. Vermeire, K. et al. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol. 158, 5507–5513 (1997).

    CAS  PubMed  Google Scholar 

  10. Trembleau, S. et al. Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J. Immunol. 163, 2960–2968 (1999).

    CAS  PubMed  Google Scholar 

  11. Hultgren, B., Huang, X., Dybdal, N. & Stewart, T. A. Genetic absence of γ-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45, 812–817 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vinuesa, C. G., Tangye, S. G., Moser, B. & Mackay, C. R. Follicular B helper T cells in antibody responses and autoimmunity. Nature Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  Google Scholar 

  15. Aggarwal, S. & Gurney, A. L. IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  16. Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumour necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumour necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  21. Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ye, P. et al. Requirement of interleukin 17 receptor signalling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rutitzky, L. I., Lopes da Rosa, J. R. & Stadecker, M. J. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J. Immunol. 175, 3920–3926 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bush, K. A., Farmer, K. M., Walker, J. S. & Kirkham, B. W. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 46, 802–805 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, C. & Nurieva, R. I. Regulation of immune and autoimmune responses by ICOS. J. Autoimmun. 21, 255–260 (2003).

    Article  PubMed  Google Scholar 

  27. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin, H. C. K., Benbernou, N., Fekkar, H., Esnault, S. & Guenounou, M. Regulation of IL-17, IFN-γ and IL-10 in human CD8+T cells by cyclic AMP-dependent signal transduction pathway. Cytokine 10, 841–850 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ferretti, S., Bonneau, O., Dubois, G. R., Jones, C. E. & Trifilieff, A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol. 170, 2106–2112 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, Z. et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995).

    CAS  PubMed  Google Scholar 

  32. Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol. 165, 6107–6115 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Hunter, C. A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nature Rev. Immunol. 5, 521–531 (2005).

    Article  CAS  Google Scholar 

  34. Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Happel, K. I. et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202, 761–769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khader, S. A. et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available. J. Immunol. 175, 788–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  38. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Veldhoen, M., Hocking, R. J., Atkins, C. J., Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank many colleagues for their scientific contribution to the development of the concept described in this article and supports from the National Institutes fof Health, USA, the Arthritis Foundation, USA, the Cancer Research Institute, USA, and the MD Anderson Cancer Center, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Chen Dong's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6, 329–334 (2006). https://doi.org/10.1038/nri1807

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing