Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data

Key Points

  • Our view of human mast cells has broadened. In the past, they were established as crucial effector cells of allergic inflammation; now, they are increasingly recognized as cells that regulate many tissue functions, such as blood flow and coagulation, smooth-muscle contraction and peristalsis of the intestine, mucosal secretion, wound healing and regulation of innate and adaptive immune responses, including tolerance.

  • Laboratory tools to study human mast cells are limited; therefore, many mast-cell studies have been carried out using murine mast cells. This has not always been clearly indicated in review articles or in the titles of original articles.

  • There are important functional differences between human and murine mast cells, such as receptor expression (for example, Fcγ receptors and functional TLRs), responsiveness to cytokines (for example, IL-3 and IL-4) and mediator expression (for example, proteases, IL-4, IL-5 and TNF). These differences limit extrapolation from murine data to the human situation.

  • Human mast cells seem to be more closely related to monocytes and macrophages, whereas human basophils share properties mainly with eosinophils.

  • Mast-cell inhibitors, such as ligands of ITIM-containing receptors (FcγRIIb and CD300a), the anti-inflammatory cytokines IL-10 and TGFβ1, CD200 and intracellular signalling molecules that modulate FcεRI-mediated mast-cell activation, are a new and exciting area of mast-cell research that is just starting to be unravelled for human mast cells.

  • The role of mast cells in allergic inflammation is complex and is not restricted to the immediate phase of IgE-mediated reactions. Mast-cell mediators affect the mucosa, the blood vessels and sensory nerves at sites of allergy; mast-cell proteases and cytokines contribute to the initiation of a facultative late-phase reaction by recruiting and activating eosinophils, neutrophils and TH2 cells; and mast-cell-derived signals (such as IL-13 and CD40L) might contribute to IgE synthesis.

Abstract

The versatile role of mast cells in allergy, in innate immune responses and in the regulation of tissue homeostasis is well recognized. However, it is often not made clear that most mast-cell data derive solely from experiments in mice or rats, species that obviously never suffer from allergic and most other mast-cell-associated human diseases. Data on human mast cells are limited, and the mast-cell source and species from which findings derive are frequently not indicated in the titles and summaries of research publications. This Review summarizes recent data on human mast cells, discusses differences with murine mast cells, and describes new tools to study this increasingly meaningful cell type in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed functions of human mast cells under normal conditions.
Figure 2: Comparison between human mast cells and related bone-marrow-derived cells.
Figure 3: Inhibitory signals for mast-cell mediator release induced by FcεRI aggregation.
Figure 4: Role of mast cells in allergic inflammation.

Similar content being viewed by others

References

  1. Gurish, M. F. & Austen, K. F. The diverse roles of mast cells. J. Exp. Med. 194, 1–5 (2001).

    Article  Google Scholar 

  2. Bradding, P., Walls, A. F. & Holgate, S. T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 117, 1277–1284 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. & Hamid, Q. A. New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bischoff, S. C. & Crowe, S. E. Gastrointestinal food allergy: new insights into pathophysiology and clinical perspectives. Gastroenterology 128, 1089–1113 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bischoff, S. C. in Mast cells and basophils (eds Marone, G., Lichtenstein, L. M. & Galli, S. J.) 541–565 (Academic Press, San Diego, 2000).

    Book  Google Scholar 

  6. Vliagoftis, H. & Befus, A. D. Mast cells at mucosal frontiers. Curr. Mol. Med. 5, 573–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135–142 (2005).

    Article  CAS  Google Scholar 

  8. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006). This study establishes for the first time that mast cells are essential in CD4+CD25+FOXP3+ regulatory T-cell-dependent peripheral tolerance in mice, and that IL-9 is the functional link by which activated T cells recruit and activate mast cells to mediate regional immune suppression.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Theoharides, T. C. & Cochrane, D. E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 146, 1–12 (2004).

    Article  CAS  Google Scholar 

  11. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004). This paper shows for the first time that human mast cells form functional synapses with nerve endings in vivo and that such synapses mediate pain, which is one of the main symptoms of irritable bowel syndrome, to the central nervous system.

    Article  PubMed  Google Scholar 

  12. Marshall, J. S. Mast cell responses to pathogens. Nature Rev. Immunol. 4, 787–799 (2004).

    Article  CAS  Google Scholar 

  13. Malaviya, R. & Georges, A. Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin. Rev. Allergy Immunol. 22, 189–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Maurer, M. et al. What is the physiological function of mast cells? Exp. Dermatol. 12, 886–910 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432, 512–516 (2004). This study, although carried out in the murine system, further establishes mast cells as part of the innate immune defence mechanisms that can be activated not only by microorganisms but also by endogenous factors such as endothelin.

    Article  CAS  PubMed  Google Scholar 

  16. Garfield, R. E., Irani, A. M., Schwartz, L. B., Bytautiene, E. & Romero, R. Structural and functional comparison of mast cells in the pregnant versus nonpregnant human uterus. Am. J. Obstet. Gynecol. 194, 261–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Cooper, P. H. & Stanworth, D. R. Isolation of rat peritoneal mast cells in high yield and purity. Methods Cell. Biol. 14, 365–378 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Enerback, L. & Wingren, U. Histamine content of peritoneal and tissue mast cells of growing rats. Histochemistry 66, 113–124 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Bischoff, S. C. et al. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 28, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Abonia, J. P. et al. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105, 4308–4313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schernthaner, G. H. et al. Detection of differentiation- and activation-linked cell surface antigens on cultured mast cell progenitors. Allergy 60, 1248–1255 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Dahl, C., Hoffmann, H. J., Saito, H. & Schiotz, P. O. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy 59, 1087–1096 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Rennick, D., Hunte, B., Holland, G. & Thompson-Snipes, L. Cofactors are essential for stem cell factor-dependent growth and maturation of mast cell progenitors: comparative effects of interleukin-3 (IL-3), IL-4, IL-10, and fibroblasts. Blood 85, 57–65 (1995).

    CAS  PubMed  Google Scholar 

  24. Thienemann, F., Henz, B. M. & Babina, M. Regulation of mast cell characteristics by cytokines: divergent effects of interleukin-4 on immature mast cell lines versus mature human skin mast cells. Arch. Dermatol. Res. 296, 134–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bischoff, S. C., Sellge, G., Schwengberg, S., Lorentz, A. & Manns, M. P. Stem cell factor-dependent survival, proliferation and enhanced releasability of purified mature mast cells isolated from human intestinal tissue. Int. Arch. Allergy Immunol. 118, 104–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Sellge, G. & Bischoff, S. C. Isolation, culture, and characterization of intestinal mast cells. Methods Mol. Biol. 315, 123–138 (2006). This paper summarizes our current knowledge of basic techniques for the isolation of human mast cells from mucosal tissues.

    PubMed  Google Scholar 

  27. MacDonald, A. J. et al. Rat bone marrow-derived mast cells co-cultured with 3T3 fibroblasts in the absence of T-cell derived cytokines require stem cell factor for their survival and maintain their mucosal mast cell-like phenotype. Immunology 88, 375–383 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galli, S. J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kirshenbaum, A. S. et al. Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcεRI or FcγRI. Leuk. Res. 27, 677–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kirshenbaum, A. S., Kessler, S. W., Goff, J. P. & Metcalfe, D. D. Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells. J. Immunol. 146, 1410–1415 (1991).

    CAS  PubMed  Google Scholar 

  31. Mitsui, H. et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc. Natl Acad. Sci. USA 90, 735–739 (1993). This paper established SCF as the most relevant human mast-cell growth factor.

    Article  CAS  PubMed  Google Scholar 

  32. Toru, H. et al. Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation. Blood 91, 187–195 (1998).

    CAS  PubMed  Google Scholar 

  33. Denburg, J. A. Basophil and mast cell lineages in vitro and in vivo. Blood 79, 846–860 (1992).

    CAS  PubMed  Google Scholar 

  34. Agis, H. et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 87, 535–543 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakajima, T. et al. Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells. Blood 98, 1127–1134 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Foster, B., Schwartz, L. B., Devouassoux, G., Metcalfe, D. D. & Prussin, C. Characterization of mast cell tryptase-expressing peripheral blood cells as basophils. J. Allergy Clin. Immunol. 109, 287–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, R. et al. Expression of a mast cell tryptase in the human monocytic cell lines U-937 and Mono Mac 6. Scand. J. Immunol. 38, 359–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Ito, T. et al. Mast cells acquire monocyte-specific gene expression and monocyte-like morphology by overproduction of PU.1. J. Immunol. 174, 376–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kempuraj, D. et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 93, 3338–3346 (1999).

    CAS  PubMed  Google Scholar 

  40. Kocabas, C. N., Yavuz, A. S., Lipsky, P. E., Metcalfe, D. D. & Akin, C. Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J. Allergy Clin. Immunol. 115, 1155–1161 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Razin, E. et al. Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J. Immunol. 132, 1479–1486 (1984).

    CAS  PubMed  Google Scholar 

  42. Valent, P. et al. Failure to detect IL-3-binding sites on human mast cells. J. Immunol. 145, 3432–3437 (1990).

    CAS  PubMed  Google Scholar 

  43. Gebhardt, T. et al. Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur. J. Immunol. 32, 2308–2316 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kurimoto, Y., De Weck, A. L. & Dahinden, C. A. The effect of interleukin 3 upon IgE-dependent and IgE-independent basophil degranulation and leukotriene generation. Eur. J. Immunol. 21, 361–368 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Boyce, J. A. Eicosanoid mediators of mast cells: receptors, regulation of synthesis, and pathobiologic implications. Chem. Immunol. Allergy 87, 59–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Weller, C. L. et al. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med. 201, 1961–1971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lorentz, A., Schwengberg, S., Mierke, C., Manns, M. P. & Bischoff, S. C. Human intestinal mast cells produce IL-5 in vitro upon IgE receptor cross-linking and in vivo in the course of intestinal inflammatory disease. Eur. J. Immunol. 29, 1496–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lorentz, A., Schwengberg, S., Sellge, G., Manns, M. P. & Bischoff, S. C. Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J. Immunol. 164, 43–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Schechter, N. M., Pereira, P. J. B. & Strobl, S. in Mast Cells and Basophils (eds Marone, G., Lichtenstein, L.M. Galli, S.J.) 275–290 (Academic Press, San Diego, 2000).

    Book  Google Scholar 

  50. Hallgren, J. & Pejler, G. Biology of mast cell tryptase. An inflammatory mediator. FEBS J. 273, 1871–1895 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, H. R. & Pemberton, A. D. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105, 375–390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bischoff, S. C. et al. IL-4 enhances proliferation and mediator release in mature human mast cells. Proc. Natl Acad. Sci. USA 96, 8080–8085 (1999). This paper showed for the first time that IL-4 is an important regulator of human mast-cell functions, which has implications for allergy and other T H 2-skewed diseases.

    Article  CAS  PubMed  Google Scholar 

  53. Mierke, C. T. et al. Human endothelial cells regulate survival and proliferation of human mast cells. J. Exp. Med. 192, 801–811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcε receptor I cross-linking: an interspecies comparison. Blood 100, 3861–3868 (2002). References 35 and 54 are a unique and valuable source of information about differences in gene expression between human and murine mast cells, as well as between human mast cells and eosinophils or basophils.

    Article  CAS  PubMed  Google Scholar 

  55. Gelfand, E. W. Pro: mice are a good model of human airway disease. Am. J. Respir. Crit. Care Med. 166, 5–6 (2002).

    Article  PubMed  Google Scholar 

  56. Persson, C. G. Con: mice are not a good model of human airway disease. Am. J. Respir. Crit. Care Med. 166, 6–7 (2002).

    Article  PubMed  Google Scholar 

  57. Hamelmann, E. et al. Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am. J. Respir. Crit. Care Med. 155, 819–825 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Saito, H. Mast cell-specific genes — new drug targets/pathogenesis. Chem. Immunol. Allergy 87, 198–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kitamura, Y., Kasugai, T., Arizono, N. & Matsuda, H. Development of mast cells and basophils: processes and regulation mechanisms. Am. J. Med. Sci. 306, 185–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Bischoff, S. C., de Weck, A. L. & Dahinden, C. A. Interleukin 3 and granulocyte/macrophage-colony-stimulating factor render human basophils responsive to low concentrations of complement component C3a. Proc. Natl Acad. Sci. USA 87, 6813–6817 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Seder, R. A. et al. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int. Arch. Allergy Appl. Immunol. 94, 137–140 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Brunner, T., Heusser, C. H. & Dahinden, C. A. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med. 177, 605–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bradding, P. et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J. Immunol. 151, 3853–3865 (1993).

    CAS  PubMed  Google Scholar 

  66. Bischoff, S. C. et al. Mast cells are an important cellular source of tumour necrosis factor α in human intestinal tissue. Gut 44, 643–652 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakae, S. et al. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc. Natl Acad. Sci. USA 102, 6467–6472 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Rogler, G. et al. Isolation and phenotypic characterization of colonic macrophages. Clin. Exp. Immunol. 112, 205–215 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kinet, J. P. The high-affinity IgE receptor (FcεRI): From physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Rivera, J. & Gilfillan, A. M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol. 117, 1214–1225 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast cell activation. Nature Rev. Immunol. 6, 218–230 (2006).

    Article  CAS  Google Scholar 

  72. Lorentz, A., Klopp, I., Gebhardt, T., Manns, M. P. & Bischoff, S. C. Role of activator protein-1, nuclear factor-κB and nuclear factor of activated T-cells in IgE receptor-mediated cytokine expression in mature human mast cells. J. Allergy Clin. Immunol. 111, 1062–1068 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Kawakami, T. & Galli, S. J. Regulation of mast cell and basophil function and survival by IgE. Nature Rev. Immunol. 2, 773–786 (2002).

    Article  CAS  Google Scholar 

  74. Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811 (2001). This paper shows for the first time that mast cells can be activated by soluble monomeric IgE in the absence of antigen. This finding has implications for understanding the mechanisms of allergen-independent mast-cell activation and perpetuation of allergic symptoms in the absence of allergen.

    Article  CAS  PubMed  Google Scholar 

  75. Matsuda, K. et al. Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J. Allergy Clin. Immunol. 116, 1357–1363 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Cruse, G. et al. Activation of human lung mast cells by monomeric immunoglobulin E. Eur. Respir. J. 25, 858–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Redegeld, F. A. et al. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nature Med. 8, 694–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kraneveld, A. D. et al. Elicitation of allergic asthma by immunoglobulin free light chains. Proc. Natl Acad. Sci. USA 102, 1578–1583 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Lorentz, A., Schuppan, D., Gebert, A., Manns, M. P. & Bischoff, S. C. Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood 99, 966–972 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Bischoff, S. C & Dahinden, C. A. c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J. Exp. Med. 175, 237–244 (1992). In this paper, the multiple regulatory functions of SCF in fully mature human tissue mast cells are identified.

    Article  CAS  PubMed  Google Scholar 

  81. Undem, B. J., Lichtenstein, L. M., Hubbard, W. C., Meeker, S. & Ellis, J. L. Recombinant stem cell factor-induced mast cell activation and smooth muscle contraction in human bronchi. Am. J. Respir. Cell. Mol. Biol. 11, 646–650 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Kulka, M. & Metcalfe, D. D. High-resolution tracking of cell division demonstrates differential effects of TH1 and TH2 cytokines on SCF-dependent human mast cell production in vitro: correlation with apoptosis and Kit expression. Blood 105, 592–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Lorentz, A. et al. IL-4-induced priming of human intestinal mast cells for enhanced survival and TH2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. J. Immunol. 174, 6751–6756 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Okayama, Y., Hagaman, D. D. & Metcalfe, D. D. A comparison of mediators released or generated by IFN-γ-treated human mast cells following aggregation of FcγRI or FcεRI. J. Immunol. 166, 4705–4712 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. el-Lati, S. G., Dahinden, C. A & Church, M. K. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J. Invest. Dermatol. 102, 803–806 (1994).

    Article  CAS  Google Scholar 

  86. Guhl, S., Lee, H. H., Babina, M., Henz, B. M. & Zuberbier, T. Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J. Neuroimmunol. 163, 92–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Bischoff, S. C. et al. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol. Motil. 16, 185–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. van der Kleij, H. P. et al. Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. J. Immunol. 171, 2074–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Miyazaki, D. et al. Macrophage inflammatory protein-1α as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J. Clin. Invest. 115, 434–442 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Varadaradjalou, S, et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur. J. Immunol. 33, 899–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Iida, M. et al. Selective down-regulation of high-affinity IgE receptor (FcεRI) α-chain messenger RNA among transcriptome in cord blood-derived versus adult peripheral blood-derived cultured human mast cells. Blood 97, 1016–1022 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Inomata, N., Tomita, H., Ikezawa, Z. & Saito, H. Differential gene expression profile between cord blood progenitor-derived and adult progenitor-derived human mast cells. Immunol. Lett. 98, 265–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Malbec, O., Attal, J. P., Fridman, W. H. & Daeron, M. Negative regulation of mast cell proliferation by FcγRIIB. Mol. Immunol. 38, 1295–1299 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Abramson, J., Xu, R. & Pecht, I. An unusual inhibitory receptor–the mast cell function-associated antigen (MAFA). Mol. Immunol. 38, 1307–1313 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Luskova, P. & Draber, P. Modulation of the Fcε receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr. Pharm. Des. 10, 1727–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Bachelet, I., Munitz, A., Moretta, A., Moretta, L. & Levi-Schaffer, F. The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J. Immunol. 175, 7989–7995 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Sloane, D. E. et al. Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 104, 2832–2839 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64, 215–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Gebhardt, T. et al. Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor β1. Gut 54, 928–934 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Royer, B. et al. Inhibition of IgE-induced activation of human mast cells by IL-10. Clin. Exp. Allergy 31, 694–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Cherwinski, H. M. et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J. Immunol. 174, 1348–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, S., Cherwinski, H., Sedgwick, J. D. & Phillips, J. H. Molecular mechanisms of CD200 inhibition of mast cell activation. J. Immunol. 173, 6786–6793 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–1000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tam, S. Y. et al. RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nature Immunol. 5, 844–852 (2004).

    Article  CAS  Google Scholar 

  105. Hjertson, M. et al. Retinoic acid inhibits in vitro development of mast cells but has no marked effect on mature human skin tryptase- and chymase-positive mast cells. J. Invest. Dermatol. 120, 239–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Ishida, S., Kinoshitam, T., Sugawaram, N., Yamashita, T. & Koike, K. Serum inhibitors for human mast cell growth: possible role of retinol. Allergy 58, 1044–1052 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Gebhardt, T. et al. β2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur. J. Immunol. 35, 1124–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Kraft, S. et al. Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J. Exp. Med. 201, 385–396 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu, D. et al. A chimeric human-cat fusion protein blocks cat-induced allergy. Nature Med. 11, 446–449 (2005). This paper shows for the first time that novel mechanisms of mast-cell inhibition developed in vitro are applicable in vivo and offer new strategies for the treatment of allergic diseases.

    Article  CAS  PubMed  Google Scholar 

  110. Kinet, J. P. A new strategy to counter allergy. N. Engl. J. Med. 353, 310–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Pardanani, A. et al. Imatinib for systemic mast cell disease. Lancet 362, 535–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Berlin, A. A. & Lukacs, N. W. Treatment of cockroach allergen asthma model with imatinib attenuates airway responses. Am. J. Respir. Crit. Care Med. 171, 35–39 (2005).

    Article  PubMed  Google Scholar 

  113. Dietz, A. B. et al. Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104, 1094–1099 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Norris, A. A. Pharmacology of sodium cromoglycate. Clin. Exp. Allergy 26 (Suppl. 4), 5–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Edwards, A. M. Oral sodium cromoglycate: its use in the management of food allergy. Clin. Exp. Allergy 25 (Suppl. 1), 31–33 (1995).

    Article  PubMed  Google Scholar 

  116. Cole, Z. A., Clough, G. F. & Church, M. K. Inhibition by glucocorticoids of the mast cell-dependent weal and flare response in human skin in vivo. Br. J. Pharmacol. 132, 286–292 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marone, G., Triggiani, M., Genovese, A. & Paulis, A. D. Role of human mast cells and basophils in bronchial asthma. Adv. Immunol. 88, 97–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Wood, J. D. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 127, 635–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Krishna, M. T. et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J. Allergy Clin. Immunol. 107, 1039–1045 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Furuta, G. T. et al. Mast cell-dependent tumor necrosis factor α production participates in allergic gastric inflammation in mice. Gastroenterology 113, 1560–1569 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Malaviya, R., Navara, C. & Uckun, F. M. Role of Janus kinase 3 in mast cell-mediated innate immunity against gram-negative bacteria. Immunity 15, 313–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Dahlen, S. E. & Kumlin, M. Monitoring mast cell activation by prostaglandin D2 in vivo. Thorax 59, 453–455 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Brightling, C. E. et al. Mast cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002). This paper establishes mast cells as crucial cells involved not only in mucosal-tissue responses, but also in smooth-muscle responses in human asthmatic individuals.

    Article  PubMed  Google Scholar 

  125. Oguma, T. et al. Role of prostanoid DP receptor variants in susceptibility to asthma. N. Engl. J. Med. 351, 1752–1763 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Luster, A. D. & Tager, A. M. T-cell trafficking in asthma: lipid mediators grease the way. Nature Rev. Immunol. 4, 711–724 (2004).

    Article  CAS  Google Scholar 

  127. Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 173, 5247–5257 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23, 191–202 (2005). This paper defines and separates the functions of mast cells and basophils in vivo in the pathogenesis of allergic inflammation.

    Article  CAS  PubMed  Google Scholar 

  129. Al-Muhsen, S. Z., Shablovsky, G., Olivenstein, R., Mazer, B. & Hamid, Q. The expression of stem cell factor and c-kit receptor in human asthmatic airways. Clin. Exp. Allergy 34, 911–916 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Macdonald, T. T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Moriarty, D., Goldhill, J., Selve, N., O'Donoghue, D. P. & Baird, A. W. Human colonic anti-secretory activity of the potent NK(1) antagonist, SR140333: assessment of potential anti-diarrhoeal activity in food allergy and inflammatory bowel disease. Br. J. Pharmacol. 133, 1346–1354 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Schramm, G. et al. Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J. Biol. Chem. 278, 18384–18392 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Helmby, H. & Grencis, R. K. IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-γ during Trichinella spiralis infection. J. Immunol. 169, 2553–2560 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Boyce, J. A. Mast cells: beyond IgE. J. Allergy Clin. Immunol. 111, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Orinska, Z. et al. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106, 978–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Kulka, M., Alexopoulou, L., Flavell, R. A. & Metcalfe, D. D. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol. 114, 174–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Woolley, D. E. The mast cell in inflammatory arthritis. N. Engl. J. Med. 348, 1709–1711 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Valent, P. et al. New aspects in thrombosis research: possible role of mast cells as profibrinolytic and antithrombotic cells. Thromb. Haemost. 87, 786–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Lindstedt, K. A. & Kovanen, P. T. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr. Opin. Lipidol. 15, 567–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Silver, R. B. et al. Mast cells: a unique source of renin. Proc. Natl Acad. Sci. USA 101, 13607–13612 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Zappulla, J. P., Arock, M., Mars, L. T. & Liblau, R. S. Mast cells: new targets for multiple sclerosis therapy? J. Neuroimmunol. 131, 5–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Theoharides, T. C., Donelan, J., Kandere-Grzybowska, K. & Konstantinidou, A. The role of mast cells in migraine pathophysiology. Brain Res. Rev. 49, 65–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA. 102, 13773–13778 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Jin, F. et al. A pooling-deconvolution strategy for biological network elucidation. Nature Methods 3, 183–189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Theoharides, T. C. & Bielory, L. mast cells and mast cell mediators as targets of dietary supplements. Ann. Allergy Asthma Immunol. 93, S24–S34 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all previous and current fellows in my former laboratory in Hannover (1992–2004) and my current laboratory in Stuttgart (since 2005) for their engagement in mast-cell research. In particular, I thank C. Dahinden and J. Bienenstock for continuous discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mast-cell microarray data

Stephan Bischoff's homepage

Glossary

'Wheal and flare' reaction

The acute response of the skin to allergen in a skin-prick test. The wheal refers to the swelling, the flare refers to the reddening of the skin over a wider area that is induced by vasodilation, local oedema and neuronal mechanisms.

Type I hypersensitivity

Immunological hypersensitivity reactions have been classified by Coombs and Gell into four types depending on the antigen-recognizing molecule. Type I hypersensitivity is defined as an IgE-mediated hypersensitivity reaction, also known as an 'anaphylaxis reaction', consisting of an early phase (wheal and flare reaction) and a facultative late-phase reaction.

Type III hypersensitivity

An immune-complex-mediated hypersensitivity reaction; the immune complexes consist of exogenous or endogenous antigens and IgG.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A structural motif containing tyrosine residues that is found in the cytoplasmic tails of several inhibitory receptors, such as FcγRIIb. The prototype six-amino-acid ITIM sequence is (Ile/Val/Leu/Ser)-Xaa-Tyr-Xaa-Xaa-(Leu/Val). Ligand-induced clustering of these inhibitory receptors results in tyrosine phosphorylation, often by SRC-family tyrosine kinases, which provides a docking site for the recruitment of cytoplasmic phosphatases that have an SH2 domain.

Late-phase reaction

IgE-mediated allergic reactions occurring within a few minutes (early-phase reaction) can be followed by a facultative secondary response phase starting typically 2–4 hours after allergen challenge. This late-phase anaphylaxis, in contrast to the early phase, is characterized by a pronounced cellular infiltration at the site of allergen challenge, which might lead to long-lasting inflammation and tissue dysfunction.

Type IV hypersensitivity

T-cell-mediated hypersensitivity reactions, also known as delayed-type hypersensitivity reactions. Despite some similarities to the late-phase reactions in the course of type I hypersensitivity reactions, they are separated because they are not preceded by an IgE-dependent early-phase reaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, S. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7, 93–104 (2007). https://doi.org/10.1038/nri2018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing