Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monocytes and macrophages: developmental pathways and tissue homeostasis

Key Points

  • In steady-state conditions, blood monocyte subsets form in a developmental sequence with mouse LY6Chi monocytes giving rise to LY6Clow monocytes.

  • LY6Clow monocytes act within the vasculature by surveying the vessel wall for injury and LY6Chi monocytes are recruited to sites of inflammation and, after extravasation, differentiate in the tissue into cells with dendritic cell and macrophage activities.

  • Intestinal macrophages are continuously renewed by LY6Chi monocytes and thus differ from most other embryonic-derived tissue macrophages. LY6Chi monocytes are probably recruited in response to the tonic low inflammatory signals that are provided by the commensal gut microbiota. Other tissue macrophages that are derived from monocytes include dermal and heart macrophages.

  • Specific tissue-resident macrophage populations in mice are seeded before birth. At a very early stage, embryonic precursors — such as yolk sac-derived macrophages and fetal liver-derived monocytes — give rise to tissue macrophages that persist and maintain the macrophage pool into adulthood, without being superseded by adult bone marrow-derived or blood monocyte-derived cells.

  • Both yolk sac-derived macrophages and fetal liver-derived monocytes give rise to fetal macrophages. Their relative contribution to adult tissue macrophage populations varies between tissues and remains to be fully elucidated.

  • In adults, tissue macrophages maintain themselves by self-renewal at low levels in the steady state. Importantly, the ability of tissue macrophages to proliferate is enhanced during inflammation.

Abstract

Monocytes and macrophages have crucial and distinct roles in tissue homeostasis and immunity, but they also contribute to a broad spectrum of pathologies and are thus attractive therapeutic targets. Potential intervention strategies that aim to manipulate these cells will require an in-depth understanding of their origins and the mechanisms that ensure their homeostasis. Recent evidence shows that monocytes do not substantially contribute to most tissue macrophage populations in the steady state or during certain types of inflammation. Rather, most tissue macrophage populations in mice are derived from embryonic precursors, are seeded before birth and can maintain themselves in adults by self-renewal. In this Review, we discuss the evidence that has dramatically changed our understanding of monocyte and macrophage development, and the maintenance of these cells in the steady state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse monocyte compartment.
Figure 2: Embryonic macrophage development.
Figure 3: Dynamics of embryonic-derived versus adult-derived macrophages.

Similar content being viewed by others

References

  1. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nature Immunol. 14, 986–995 (2013).

    Article  CAS  Google Scholar 

  4. Williams, M. J. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178, 4711–4716 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Etzrodt, M. et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep. 1, 317–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mildner, A. et al. Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 121, 1016–1027 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. van Furth, R. & Sluiter, W. Distribution of blood monocytes between a marginating and a circulating pool. J. Exp. Med. 163, 474–479 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013). References 11 and 12 establish that most adult tissue-resident macrophages do not rely on adult monocyte input.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avraham-Davidi, I. et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J. Exp. Med. 210, 2611–2625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Cecchini, M. G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372 (1994).

    CAS  PubMed  Google Scholar 

  19. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Wiktor-Jedrzejczak, W. & Gordon, S. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol. Rev. 76, 927–947 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Robbins, C. S. et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012).

    Article  PubMed  Google Scholar 

  22. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nature Immunol. 14, 821–830 (2013). References 22, 23 and 25 define MDPs and their potential to give rise to monocytes. Reference 25 establishes monocyte ontogeny in vivo.

    Article  CAS  Google Scholar 

  26. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989). This is the first report that defines human monocyte subsets according to their expression of CD14 and CD16, thus establishing the concept of monocyte heterogeneity.

    CAS  PubMed  Google Scholar 

  29. Ziegler-Heitbrock, L. & Hofer, T. P. J. Toward a refined definition of monocyte subsets. Front. Immunol. 4, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001). References 31 and 32 highlight, for the first time, monocyte heterogeneity in mouse blood and pioneer the study of monocyte functions in vivo by introducing CX 3 CR1GFP reporter mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007). This hallmark study represents a breakthrough in our understanding of LY6Clow monocytes and the functional differences between monocyte subsets.

    Article  CAS  PubMed  Google Scholar 

  34. Carlin, L. M. et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Drevets, D. A. et al. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J. Immunol. 172, 4418–4424 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotech. 29, 1005–1010 (2011).

    Article  CAS  Google Scholar 

  41. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  42. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007). This study elegantly highlights the dynamics between resident microglial cells and infiltrating monocytes, and their distinct functional relevance.

    Article  CAS  PubMed  Google Scholar 

  43. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol. 7, 311–317 (2006).

    Article  CAS  Google Scholar 

  44. Leirião, P., del Fresno, C. & Ardavín, C. Monocytes as effector cells: activated Ly-6Chigh mouse monocytes migrate to the lymph nodes through the lymph and cross-present antigens to CD8+ T cells. Eur. J. Immunol. 42, 2042–2051 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009). Together with reference 14, this study establishes that intestinal macrophages are derived from LY6Chi monocytes and are thus ontogenetically distinct from most other tissue macrophage compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42, 3150–3166 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zigmond, E. et al. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. A-Gonzalez, N. et al. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nature Immunol. 14, 831–839 (2013).

    Article  CAS  Google Scholar 

  51. Probst, H. C. et al. Histological analysis of CD11c–DTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol. 141, 398–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 34, 162–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tagliani, E. et al. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J. Exp. Med. 208, 1901–1916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132, 2487–2500 (2009).

    Article  PubMed  Google Scholar 

  58. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nature Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Lessner, S. M., Prado, H. L., Waller, E. K. & Galis, Z. S. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am. J. Pathol. 160, 2145–2155 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swirski, F. K. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl Acad. Sci. USA 103, 10340–10345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu. Rev. Immunol. 25, 745–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta–gonad–mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

  66. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Tavian, M. & Peault, B. Embryonic development of the human hematopoietic system. Int. J. Dev. Biol. 49, 243–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Ginhoux, F., Lim, S., Hoeffel, G., Low, D. & Huber, T. Origin and differentiation of microglia. Front. Cell Neurosci. 7, 45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ginhoux, F. & Merad, M. Ontogeny and homeostasis of Langerhans cells. Immunol. Cell Biol. 88, 387–392 (2010).

    Article  PubMed  Google Scholar 

  70. Sorokin, S. P., Hoyt, R. F. J., Blunt, D. G. & McNelly, N. A. Macrophage development: II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232, 527–550 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Mizoguchi, S., Takahashi, K., Takeya, M., Naito, M. & Morioka, T. Development, differentiation, and proliferation of epidermal Langerhans cells in rat ontogeny studied by a novel monoclonal antibody against epidermal Langerhans cells, RED-1. J. Leukocyte Biol. 52, 52–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Enzan, H. Electron microscopic studies of macrophages in early human yolk sacs. Acta Pathol. Jpn 36, 49–64 (1986).

    CAS  PubMed  Google Scholar 

  73. Migliaccio, G. et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac–liver transition. J. Clin. Invest. 78, 51–60 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takahashi, K., Yamamura, F. & Naito, M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukoc. Biol. 45, 87–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Takahashi, K. & Naito, M. Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell 25, 351–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McGrath, K. E., Koniski, A. D., Malik, J. & Palis, J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101, 1669–1676 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Naito, M., Takahashi, K. & Nishikawa, S. Development, differentiation, and maturation of macrophages in the fetal mouse liver. J. Leukoc. Biol. 48, 27–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012). References 76, 77 and 80 establish a contribution of embryonic yolk sac progenitors to adult tissue-resident macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Gomez Perdiguero, E. & Geissmann, F. Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb. Symp. Quant. Biol. http://dx.doi.org/10.1101/sqb.2013.78.020032 (2013).

  83. Bertrand, J. Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004–3011 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999).

    CAS  PubMed  Google Scholar 

  85. Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lièvre, F. & Marcos, M. A. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364, 67–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Medvinsky, A. L., Samoylina, N. L., Müller, A. M. & Dzierzak, E. A. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364, 64–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Swiers, G., Rode, C., Azzoni, E. & de Bruijn, M. F. A short history of hemogenic endothelium. Blood Cells Mol. Dis. 51, 206–212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Böiers, C. et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011). This is a seminal study that establishes the local proliferation capacity of terminally differentiated tissue macrophages upon inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghigo, C. et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med. 210, 1657–1664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seré, K. et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37, 905–916 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol. 3, 1135–1141 (2002). This is a seminal study that establishes the unique homeostasis of epidermal Langerhans cells and shows that these cells self-maintain in situ independently of any blood input.

    Article  CAS  Google Scholar 

  94. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell. Metab. 19, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. MacDonald, K. P. A. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Hashimoto, D. et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J. Exp. Med. 208, 1069–1082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C monocytes. Nature Immunol. 12, 778–785 (2011).

    Article  CAS  Google Scholar 

  99. Hanna, R. N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Rotta, G. et al. Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo. J. Exp. Med. 198, 1253–1263 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hohl, T. M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Schreiber, H. A. et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210, 2025–2039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nature Immunol. 10, 394–402 (2009).

    Article  CAS  Google Scholar 

  107. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Samstein, M. et al. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2, e01086 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neurosci. 16, 1618–1626 (2013). This is a recent study that demonstrates how investigation of the ontogeny of monocytes and tissue macrophages can be used to gain insights into the different functions of these cells.

    Article  CAS  PubMed  Google Scholar 

  110. Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  111. Cuadros, M. A. & Navascues, J. Early origin and colonization of the developing central nervous system by microglial precursors. Prog. Brain Res. 132, 51–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Cuadros, M. A., Moujahid, A., Martin-Partido, G. & Navascues, J. Microglia in the mature and developing quail brain as revealed by a monoclonal antibody recognizing hemopoietic cells. Neurosci. Lett. 148, 11–14 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Cuadros, M. A. & Navascues, J. The origin and differentiation of microglial cells during development. Prog. Neurobiol. 56, 173–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Kurz, H. & Christ, B. Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22, 98–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Koushik, S. V. et al. Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 15, 1209–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. de Jong, J. L. O. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eidsmo, L. et al. Differential migration of epidermal and dermal dendritic cells during skin infection. J. Immunol. 182, 3165–3172 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nature Immunol. 7, 265–273 (2006).

    Article  CAS  Google Scholar 

  121. Merad, M. et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nature Med. 10, 510–517 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florent Ginhoux or Steffen Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mononuclear phagocyte system

(MPS). A term introduced by Van Furth that encompasses myeloid immune cells other than polymorphonuclear granulocytes and initially included monocytes and macrophages, and then, following their discovery, dendritic cells.

microRNA

(miRNA). A class of short endogenous non-coding RNAs that modulate the proteome through binding to complementary mRNAs and repressing translational initiation or by inducing mRNA degradation. This post-transcriptional regulation of gene expression depends on an imperfect match of short 'seed' sequences with their target mRNA and hence each miRNA has potential to suppress multiple targets.

Classical dendritic cells

(cDCs). A term introduced by Ralph Steinman that should be reserved for short-lived, FLT3 ligand-dependent cells with migratory capability and a potential to efficiently stimulate naive T cells.

Macrophage and DC precursor

(MDP). A bone marrow-resident LINCD117+CD135+ clonotypic precursor with plasmacytoid dendritic cell (pDC), classical DC (cDC) and monocyte potential.

Common monocyte progenitor

(cMoP). A bone marrow-resident LINCD117+ precursor with monocyte potential that is the direct progeny of macrophage and dendritic cell precursors (MDPs).

Intravital microscopy

A technique that is based on the combination of photonics, particularly multi-photon microscopy, and new molecular and genetic tools that enables imaging of tissues of living animals and is yielding insights into the mechanisms controlling immune cell motility and interactions in tissues.

Necrosis

A form of uncontrolled cell death caused by factors that are external to the cell or tissue — such as infection, toxins or trauma — that result in the unregulated destruction of cellular components.

Anticipatory inflammation

A recently coined term that describes the finding in mice that the abundance of circulating LY6Chi monocytes is under circadian control, which might have evolved to prepare the organism for insults.

Cre–loxP

A site-specific recombination system in which two short DNA sequences (loxP sites) are engineered to flank the target DNA and the expression of Cre recombinase leads to excision of the intervening 'floxed' sequence. Depending on the type of promoter, Cre recombinase can be expressed at specific times during development or in specific sets of cells.

Kupffer cells

Specialized macrophages of the liver that reside within the lumen of the liver sinusoids.

Langerhans cells

These cells were classically considered as a dendritic cell (DC) population that resides in the skin epidermis and are now considered as a DC–macrophage hybrid, as they are unique among DC subsets in that they arise from embryonic progenitors and are radio-resistant, long-lived and independent of FLT3 ligand. They also show considerable transcriptome overlap with macrophages.

Parabiotic mice

A model in which pairs of mice are surgically joined by cutaneous vascular anastomoses so that they have a common blood circulation while maintaining separate organs and tissues. A few weeks after the initiation of parabiosis, a steady state is achieved in these mice in which circulating leukocyte populations are stably comprised of cells that are derived from both animals.

Microglial cells

This cell type constitutes a radio-resistant, highly ramified macrophage population of the central nervous system that is derived from primitive yolk sac macrophages and contributes to brain development and homeostasis by synaptic pruning and debris clearance.

Primed homeostasis

The unique homeostatic 'alert state' of the intestinal mucosa, which is constantly exposed to microbial products.

Blood–brain barrier

A semipermeable cellular structure that separates the blood from the cerebrospinal fluid, and constitutes a barrier to the passage of cells, particles and large molecules into the brain parenchyma.

Experimental autoimmune encephalomyelitis

(EAE). A well-studied mouse model of the human disease multiple sclerosis, which is characterized by extensive infiltration of the central nervous system by inflammatory cells and involves the activation of pathogenic myelin-specific TH1 or TH17 cells.

Primitive haematopoiesis

Blood cell production that originates from the yolk sac and constitutes the first wave of haematopoiesis. It is transient and starts from murine embryonic day 7.0 in the extra-embryonic yolk sac where, shortly after the onset of gastrulation, the mesodermal layer develops into structures that are referred to as blood islands that predominantly produce nucleated erythrocytes and macrophages, but not lymphocytes.

Haematopoietic stem cells

(HSCs). Cells that have both the ability to generate all types of haematopoietic cell (multipotentiality) and to replace themselves (self-renewal) during the whole lifespan of an individual.

Aorta–gonads–mesonephros

(AGM). The embryonic site where definitive haematopoietic stem cells (HSCs) are produced. It comprises the aorta, and the developing reproductive and excretory (mesonephros) systems. Within this haemogenic site, HSCs are concentrated in the aorta region.

Definitive haematopoiesis

A process that occurs in the fetal liver in the embryo, during which blood cells are produced from haematopoietic stem cells (HSCs) that are generated initially in the splanchnopleura or aorta–gonads–mesonephros (AGM), and then in the bone marrow of adults. It is responsible for the generation of the multipotent HSCs with multi-lineage haematopoietic potential, which arise within the AGM from embryonic day 10.5.

Induced pluripotent stem cells

Also known as iPS cells (or iPSCs), these are a type of pluripotent stem cell that can be generated directly from adult cells by specific genetic reprogramming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginhoux, F., Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14, 392–404 (2014). https://doi.org/10.1038/nri3671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing