Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery

Abstract

The cullin 4–DNA-damage-binding protein 1 (CUL4–DDB1) ubiquitin ligase machinery regulates diverse cellular functions and can be subverted by pathogenic viruses. Here we report the crystal structure of DDB1 in complex with a central fragment of hepatitis B virus X protein (HBx), whose DDB1-binding activity is important for viral infection. The structure reveals that HBx binds DDB1 through an α-helical motif, which is also found in the unrelated paramyxovirus SV5-V protein despite their sequence divergence. Our structure-based functional analysis suggests that, like SV5-V, HBx captures DDB1 to redirect the ubiquitin ligase activity of the CUL4–DDB1 E3 ligase. We also identify the α-helical motif shared by these viral proteins in the cellular substrate–recruiting subunits of the E3 complex, the DDB1–CUL4-associated factors (DCAFs) that are functionally mimicked by the viral hijackers. Together, our studies reveal a common yet promiscuous structural element that is important for the assembly of cellular and virally hijacked CUL4–DDB1 E3 complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hepatitis X proteins bind DDB1 with an α-helical motif.
Figure 2: The HBx helix–DDB1 interface is crucial for HBx-DDB1 interaction and HBx cytotoxic activity.
Figure 3: HBx activities require normal interactions between DDB1 and CUL4.
Figure 4: DCAF9–DDB1 interaction requires a short N-terminal sequence of DCAF9 and can be competed off by the WHx helical motif.
Figure 5: Identification of the H-box motif in DCAF9, DDB2 and other DCAF proteins.
Figure 6: A schematic model of the assembly of HBx and DCAFs to the CUL4–DDB1 E3 machinery.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  3. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  4. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  Google Scholar 

  5. Jin, J., Arias, E.E., Chen, J., Harper, J.W. & Walter, J.C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    Article  CAS  Google Scholar 

  6. He, Y.J., McCall, C.M., Hu, J., Zeng, Y. & Xiong, Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4–ROC1 ubiquitin ligases. Genes Dev. 20, 2949–2954 (2006).

    Article  CAS  Google Scholar 

  7. Higa, L.A. et al. CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8, 1277–1283 (2006).

    Article  CAS  Google Scholar 

  8. Nag, A., Bondar, T., Shiv, S. & Raychaudhuri, P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol. Cell. Biol. 21, 6738–6747 (2001).

    Article  CAS  Google Scholar 

  9. Chen, X., Zhang, Y., Douglas, L. & Zhou, P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J. Biol. Chem. 276, 48175–48182 (2001).

    Article  CAS  Google Scholar 

  10. Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387–400 (2005).

    Article  CAS  Google Scholar 

  11. Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429–1434 (2006).

    Article  CAS  Google Scholar 

  12. Kapetanaki, M.G. et al. The DDB1–CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. USA 103, 2588–2593 (2006).

    Article  CAS  Google Scholar 

  13. Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383–394 (2006).

    Article  Google Scholar 

  14. Liu, C. et al. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev. 17, 1130–1140 (2003).

    Article  CAS  Google Scholar 

  15. Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nat. Cell Biol. 5, 1008–1015 (2003).

    Article  CAS  Google Scholar 

  16. Hu, J., McCall, C.M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A-ROC1 ligase in response to DNA damage. Nat. Cell Biol. 6, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  17. Bondar, T., Ponomarev, A. & Raychaudhuri, P. Ddb1 is required for the proteolysis of the Schizosaccharomyces pombe replication inhibitor Spd1 during S phase and after DNA damage. J. Biol. Chem. 279, 9937–9943 (2004).

    Article  CAS  Google Scholar 

  18. Kim, Y. & Kipreos, E.T. Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways. Cell Div. 2, 18 (2007).

    Article  Google Scholar 

  19. Wertz, I.E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).

    Article  CAS  Google Scholar 

  20. Ghosh, P., Wu, M., Zhang, H. & Sun, H. mTORC1 signaling requires proteasomal function and the involvement of CUL4–DDB1 ubiquitin E3 ligase. Cell Cycle 7, 373–381 (2008).

    Article  CAS  Google Scholar 

  21. Hu, J. et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4-ROC1 ligase. Genes Dev. 22, 866–871 (2008).

    Article  CAS  Google Scholar 

  22. Li, T., Chen, X., Garbutt, K.C., Zhou, P. & Zheng, N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105–117 (2006).

    Article  CAS  Google Scholar 

  23. Wu, G. et al. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  Google Scholar 

  24. Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W. & Pavletich, N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  Google Scholar 

  25. Barry, M. & Fruh, K. Viral modulators of cullin RING ubiquitin ligases: culling the host defense. Sci. STKE 2006, pe21 (2006).

    PubMed  Google Scholar 

  26. Didcock, L., Young, D.F., Goodbourn, S. & Randall, R.E. The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J. Virol. 73, 9928–9933 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parisien, J.P. et al. The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283, 230–239 (2001).

    Article  CAS  Google Scholar 

  28. Ulane, C.M. & Horvath, C.M. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304, 160–166 (2002).

    Article  CAS  Google Scholar 

  29. Bouchard, M.J. & Schneider, R.J. The enigmatic X gene of hepatitis B virus. J. Virol. 78, 12725–12734 (2004).

    Article  CAS  Google Scholar 

  30. Sitterlin, D. et al. Interaction of the UV-damaged DNA-binding protein with hepatitis B virus X protein is conserved among mammalian hepadnaviruses and restricted to transactivation-proficient X-insertion mutants. J. Virol. 71, 6194–6199 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sitterlin, D., Bergametti, F., Tiollais, P., Tennant, B.C. & Transy, C. Correct binding of viral X protein to UVDDB-p127 cellular protein is critical for efficient infection by hepatitis B viruses. Oncogene 19, 4427–4431 (2000).

    Article  CAS  Google Scholar 

  32. Leupin, O., Bontron, S., Schaeffer, C. & Strubin, M. Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J. Virol. 79, 4238–4245 (2005).

    Article  CAS  Google Scholar 

  33. Bontron, S., Lin-Marq, N. & Strubin, M. Hepatitis B virus X protein associated with UV-DDB1 induces cell death in the nucleus and is functionally antagonized by UV-DDB2. J. Biol. Chem. 277, 38847–38854 (2002).

    Article  CAS  Google Scholar 

  34. Lin-Marq, N., Bontron, S., Leupin, O. & Strubin, M. Hepatitis B virus X protein interferes with cell viability through interaction with the p127-kDa UV-damaged DNA-binding protein. Virology 287, 266–274 (2001).

    Article  CAS  Google Scholar 

  35. Martin-Lluesma, S. et al. Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1. Hepatology 48, 1467–1476 (2008).

    Article  CAS  Google Scholar 

  36. Chen, H.S. et al. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J. Virol. 67, 1218–1226 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zoulim, F., Saputelli, J. & Seeger, C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J. Virol. 68, 2026–2030 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergametti, F., Bianchi, J. & Transy, C. Interaction of Hepatitis B Virus X protein with damaged DNA-binding protein p127: structural analysis and identification of antagonists. J. Biomed. Sci. 9, 706–715 (2002).

    Article  CAS  Google Scholar 

  39. Cang, Y. et al. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127, 929–940 (2006).

    Article  CAS  Google Scholar 

  40. Wakasugi, M. et al. DDB1 gene disruption causes a severe growth defect and apoptosis in chicken DT40 cells. Biochem. Biophys. Res. Commun. 364, 771–777 (2007).

    Article  CAS  Google Scholar 

  41. Leupin, O., Bontron, S., Strubin, M., Hepatitis, B. & Virus, X. Protein and simian Vvirus 5 V protein exhibit similar UV-DDB1 binding properties to mediate distinct activities. J. Virol. 77, 6274–6283 (2003).

    Article  CAS  Google Scholar 

  42. Andrejeva, J., Poole, E., Young, D.F., Goodbourn, S. & Randall, R.E. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J. Virol. 76, 11379–11386 (2002).

    Article  CAS  Google Scholar 

  43. CCP4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. D50, 760–763 (1994).

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  45. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  46. Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Advanced Light Source synchrotron beamline staff for assistance with data collection; all members of the Zheng laboratory for invaluable discussions; W. Xu for help and support in our research; and O. Leupin (Novartis) for the siRNA-resistant DDB1 clone. N.Z. is a Pew scholar. This study is supported by the Howard Hughes Medical Institute and by a Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease award and US National Institutes of Health grant CA107134 to N.Z., and Swiss National Science Foundation grants 3100A0-112496 and 31003A-127384 to M.S.

Author information

Authors and Affiliations

Authors

Contributions

T.L. designed and performed crystallographic studies, sequence analyses and GST pulldown assays. M.S., E.I.R. and P.C.v.B. designed experiments for the functional studies of the viral proteins and analyzed the data. E.I.R. and P.C.v.B. carried out the experiments. N.Z. and M.S. supervised the project and are the principal manuscript authors.

Corresponding authors

Correspondence to Michel Strubin or Ning Zheng.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9 and Supplementary Methods (PDF 920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Robert, E., van Breugel, P. et al. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17, 105–111 (2010). https://doi.org/10.1038/nsmb.1719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing