Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

L1CAM–integrin interaction induces constitutive NF-κB activation in pancreatic adenocarcinoma cells by enhancing IL-1β expression

Abstract

L1 cell adhesion molecule (L1CAM) overexpression is often associated with bad prognosis in various human carcinomas. Recent studies also suggest a role of L1CAM in pancreatic ductal adenocarcinomas (PDAC). To further address its contribution, we expressed functional domains of L1CAM in PT45-P1 PDAC cells. We found that L1CAM that is full length (L1-FL), but neither the soluble ectodomain (L1ecto) nor the cytoplasmic part (L1cyt), could enhance cell proliferation or tumour growth in mice. Expression of L1-FL resulted in constitutive activation of NF-κB, which was abolished by L1CAM knockdown. We showed that the expression of IL-1β was selectively upregulated by L1-FL, and increased IL-1β levels were instrumental for sustained NF-κB activation. IL-1β production and NF-κB activation were abolished by knockdown of α5-integrin and integrin-linked kinase, but insensitive to depletion of L1CAM cleavage proteinases. Supporting these data, PT45-P1 cells transduced with an L1CAM mutant deficient in integrin binding (L1-RGE) did not support the described L1-FL functions. Our results suggest that membranous L1CAM interacts with RGD&!minus;-binding integrins, leading to sustained NF-κB activation by IL-1β production and autocrine/paracrine signalling. The unravelling of this novel mechanism sheds new light on the important role of L1CAM expression in PDAC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ADAM:

A Disintegrin And Metalloprotease

IL-1β:

Interleukin 1 beta

L1CAM:

L1 cell adhesion molecule

L1-FL:

L1CAM full length

L1ecto:

the ectodomain of L1CAM

L1cyt:

the cytoplasmic fragment of L1CAM

L1-RGE:

human L1CAM with mutations of RGD to RGE

NF-κB:

nuclear factor kappa B

PDAC:

pancreatic ductal adenocarcinoma

References

  • Arlt A, Vorndamm J, Muerkoster S, Yu H, Schmidt WE, Folsch UR et al. (2002). Autocrine production of interleukin 1beta confers constitutive nuclear factor kappaB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 62: 910–916.

    CAS  PubMed  Google Scholar 

  • Attwell S, Mills J, Troussard A, Wu C, Dedhar S . (2003). Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol Biol Cell 14: 4813–4825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE et al. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68: 6043–6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boo YJ, Park JM, Kim J, Chae YS, Min BW, Um JW et al. (2007). L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 14: 1703–1711.

    Article  PubMed  Google Scholar 

  • Brummendorf T, Kenwrick S, Rathjen FG . (1998). Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 8: 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S . (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95: 11211–11216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel M, Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Smirnov A et al. (2003a). L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362: 869–875.

    Article  CAS  PubMed  Google Scholar 

  • Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu DA, Tilgen W et al. (2003b). L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 189: 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Gast D, Riedle S, Issa Y, Pfeifer M, Beckhove P, Sanderson MP et al. (2008a). The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27: 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  • Gast D, Riedle S, Kiefel H, Sebens Muerköster S, Schäfer H, Schäfer MKE et al. (2008b). The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res 314: 2411–2418.

    Article  CAS  PubMed  Google Scholar 

  • Gast D, Riedle S, Schabath H, Schlich S, Schneider A, Issa Y et al. (2005). L1 augments cell migration and tumor growth but not beta3 integrin expression in ovarian carcinomas. Int J Cancer 115: 658–665.

    Article  CAS  PubMed  Google Scholar 

  • Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168: 633–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T et al. (2007). Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 67: 7703–7712.

    Article  CAS  PubMed  Google Scholar 

  • Geismann C, Morscheck M, Koch D, Bergmann F, Ungefroren H, Arlt A et al. (2009). Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor beta1- and slug-dependent: role in malignant transformation of pancreatic cancer. Cancer Res 69: 4517–4526.

    Article  CAS  PubMed  Google Scholar 

  • Gouveia RM, Gomes CM, Sousa M, Alves PM, Costa J . (2008). Kinetic analysis of L1 homophilic interaction: role of the first four immunoglobulin domains and implications on binding mechanism. J Biol Chem 283: 28038–28047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S et al. (2003). ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. Faseb J 17: 292–294.

    Article  CAS  PubMed  Google Scholar 

  • Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P . (2000). Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275: 15490–15497.

    Article  CAS  PubMed  Google Scholar 

  • Hannigan G, Troussard AA, Dedhar S . (2005). Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 5: 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Hortsch M . (2000). Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 15: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Issa Y, Nummer D, Seibel T, Muerkoster SS, Koch M, Schmitz-Winnenthal FH et al. (2009). Enhanced L1CAM expression on pancreatic tumor endothelium mediates selective tumor cell transmigration. J Mol Med 87: 99–112.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Article  PubMed  Google Scholar 

  • Kaifi JT, Reichelt U, Quaas A, Schurr PG, Wachowiak R, Yekebas EF et al. (2007). L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol 20: 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  • Legate KR, Montanez E, Kudlacek O, Fassler R . (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7: 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y et al. (2009). The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206: 623–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D et al. (2005). L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25: 9040–9053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechtersheimer S, Gutwein P, Agmon LN, Stoeck A, Oleszewski M, Riedle S et al. (2001). Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155: 661–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier F, Busch S, Gast D, Goppert A, Altevogt P, Maczey E et al. (2006). The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 119: 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD et al. (1996). Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 132: 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Moos M, Tacke R, Scherer H, Teplow D, Fruh K, Schachner M . (1988). Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334: 701–703.

    Article  CAS  PubMed  Google Scholar 

  • Muerkoster S, Arlt A, Sipos B, Witt M, Grossmann M, Kloppel G et al. (2005). Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65: 1316–1324.

    Article  PubMed  Google Scholar 

  • Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H et al. (2004). A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350: 1200–1210.

    Article  CAS  PubMed  Google Scholar 

  • Novak-Hofer I, Cohrs S, Grunberg J, Friedli A, Schlatter MC, Pfeifer M et al. (2008). Antibodies directed against L1-CAM synergize with Genistein in inhibiting growth and survival pathways in SKOV3ip human ovarian cancer cells. Cancer Lett 261: 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Oleszewski M, Beer S, Katich S, Geiger C, Zeller Y, Rauch U et al. (1999). Integrin and neurocan binding to L1 involves distinct Ig domains. J Biol Chem 274: 24602–24610.

    Article  CAS  PubMed  Google Scholar 

  • Primiano T, Baig M, Maliyekkel A, Chang BD, Fellars S, Sadhu J et al. (2003). Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell 4: 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Zhong X, Flynn DC, Zheng JZ, Qiao M, Wu C et al. (2005). ILK mediates actin filament rearrangements and cell migration and invasion through PI3K/Akt/Rac1 signaling. Oncogene 24: 3154–3165.

    Article  CAS  PubMed  Google Scholar 

  • Reidy M, Zihlmann P, Hubbell JA, Hall H . (2006). Activation of cell-survival transcription factor NFkappaB in L1Ig6-stimulated endothelial cells. J Biomed Mater Res A 77: 542–550.

    Article  PubMed  Google Scholar 

  • Riedle S, Kiefel H, Gast D, Bondong S, Wolterink S, Gutwein P et al. (2009). Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420: 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P . (1995). The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131: 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Siveke JT, Eckel F, Schmid RM . (2005). Pancreatic cancer: basic and clinical aspects. Gastroenterology 128: 1606–1625.

    Article  CAS  PubMed  Google Scholar 

  • Sebens Muerkoster S, Kotteritzsch J, Geismann C, Gast D, Kruse ML, Altevogt P et al. (2009). alpha5-integrin is crucial for L1CAM-mediated chemoresistance in pancreatic adenocarcinoma. Int J Oncol 34: 243–253.

    PubMed  Google Scholar 

  • Sebens Muerkoster S, Werbing V, Sipos B, Debus MA, Witt M, Grossmann M et al. (2007). Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene 26: 2759–2768.

    Article  CAS  PubMed  Google Scholar 

  • Silletti S, Yebra M, Perez B, Cirulli V, McMahon M, Montgomery AM . (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J Biol Chem 279: 28880–28888.

    Article  CAS  PubMed  Google Scholar 

  • Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F et al. (2006a). A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393: 609–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeck A, Schlich S, Issa Y, Gschwend V, Wenger T, Herr I et al. (2006b). L1 on ovarian carcinoma cells is a binding partner for Neuropilin-1 on mesothelial cells. Cancer Lett 239: 212–226.

    Article  CAS  PubMed  Google Scholar 

  • Thelen K, Kedar V, Panicker AK, Schmid RS, Midkiff BR, Maness PF . (2002). The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci 22: 4918–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G et al. (2002). Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 38: 1708–1716.

    Article  CAS  PubMed  Google Scholar 

  • Wolterink S, Moldenhauer G, Fogel M, Kiefel H, Pfeifer M, Luttgau S et al. (2010). Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70: 2504–2515.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the competent help of Dr Alex Stoeck (University of Michigan, Ann Arbor) in retroviral expression in the early phase of the study. We also thank Ramona Straub and Dagmar Leisner for excellent technical assistance. This study was supported by grants from Deutsche Krebshilfe (Schwerpunktprogramm: Invasion and Migration), the Deutsche Forschungsgemeinschaft project nr. SE-1831/2-1 to S.S. and the EU-FP6 framework program OVCAD project nr. PE-14034 to PA. Further financial support was received from a collaborative research grant from Medigene Inc. (Munich) to PA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Altevogt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefel, H., Bondong, S., Erbe-Hoffmann, N. et al. L1CAM–integrin interaction induces constitutive NF-κB activation in pancreatic adenocarcinoma cells by enhancing IL-1β expression. Oncogene 29, 4766–4778 (2010). https://doi.org/10.1038/onc.2010.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.230

Keywords

This article is cited by

Search

Quick links