Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BAG-1 interacts with the p50–p50 homodimeric NF-κB complex: implications for colorectal carcinogenesis

Abstract

Understanding the mechanisms that promote aberrant tumour cell survival is critical for the determination of novel strategies to combat colorectal cancer (CRC). We have recently shown that the anti-apoptotic protein BAG-1, highly expressed in pre-malignant and CRC tissue, can potentiate cell survival through regulating NF-κB transcriptional activity. In this study, we identify a novel complex between BAG-1 and the p50–p50 NF-κB homodimers, implicating BAG-1 as a co-regulator of an atypical NF-κB pathway. Importantly, the BAG-1-p50 complex was detected at gene regulatory sequences including the epidermal growth factor receptor (EGFR) and COX-2 (PTGS2) genes. Suppression of BAG-1 expression using small interfering RNA was shown to increase EGFR and suppress COX-2 expression in CRC cells. Furthermore, mouse embryonic fibroblasts derived from the NF-κB1 (p105/p50) knock-out mouse were used to demonstrate that p50 expression was required for BAG-1 to suppress EGFR expression. This was shown to be functionally relevant as attenuation of BAG-1 expression increased ligand activated phosphorylation of EGFR in CRC cells. In summary, this paper identifies a novel role for BAG-1 in modulating gene expression through interaction with the p50–p50 NF-κB complexes. Data presented led us to propose that BAG-1 can act as a selective regulator of p50–p50 NF-κB responsive genes in colorectal tumour cells, potentially important for the promotion of cell survival in the context of the fluctuating tumour microenvironment. As BAG-1 expression is increased in the developing adenoma through to metastatic lesions, understanding the function of the BAG-1-p50 NF-κB complexes may aid in identifying strategies for both the prevention and treatment of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arhel NJ, Packham G, Townsend PA, Collard TJ, H-Zadeh AM, Sharp A et al. (2003). The retinoblastoma protein interacts with BAG-1 in human colonic adenoma and carcinoma derived cell lines. Int J Cancer 106: 364–371.

    Article  CAS  PubMed  Google Scholar 

  • Arlt A, Vorndamm J, Muerkoster S, Yu H, Schmidt WE, Folsch UR et al. (2002). Autocrine production of interleukin 1beta confers constitutive nuclear factor kappaB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 62: 910–916.

    CAS  PubMed  Google Scholar 

  • Baer M, Dillner A, Schwartz RC, Sedon C, Nedospasov S, Johnson PF . (1998). Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50. Mol Cell Biol 18: 5678–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeuerle PA, Baltimore D . (1988). I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242: 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Barnes JD, Arhel NJ, Lee SS, Sharp A, Al-Okail M, Packham G et al. (2005). Nuclear BAG-1 expression inhibits apoptosis in colorectal adenoma-derived epithelial cells. Apoptosis 10: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Beinke S, Ley SC . (2004). Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 382: 393–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ et al. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K et al. (1993). The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell 72: 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Brimmell M, Burns JS, Munson P, McDonald L, O'Hare MJ, Lakhani SR et al. (1999). High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers. Br J Cancer 81: 1042–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Research UK. (2007). Bowel Cancer Factsheet. Cancer Research UK Website.

  • Cao S, Zhang X, Edwards JP, Mosser DM . (2006). NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281: 26041–26050.

    Article  CAS  PubMed  Google Scholar 

  • Chen LF, Greene WC . (2004). Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5: 392–401.

    Article  CAS  PubMed  Google Scholar 

  • Clemo NK, Collard TJ, Southern SL, Edwards KD, Moorghen M, Packham G et al. (2008). BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-kappaB activity. Carcinogenesis 29: 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee R et al. (2003). The nuclear BAG-1 isoform, BAG-1 l, enhances oestrogen-dependent transcription. Oncogene 22: 4973–4982.

    Article  CAS  PubMed  Google Scholar 

  • Deng WG, Zhu Y, Wu KK . (2003). Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation. J Biol Chem 278: 4770–4777.

    Article  CAS  PubMed  Google Scholar 

  • Duckett CS, Perkins ND, Kowalik TF, Schmid RM, Huang ES, Baldwin Jr AS et al. (1993). Dimerization of NF-κB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol 13: 1315–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K, Siebenlist U . (1992). The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-kappa B-mediated inhibition. Nature 359: 339–342.

    Article  CAS  PubMed  Google Scholar 

  • Froesch BA, Takayama S, Reed JC . (1998). BAG-1 l protein enhances androgen receptor function. J Biol Chem 273: 11660–11666.

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D . (1993). The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev 7: 1354–1363.

    Article  CAS  PubMed  Google Scholar 

  • Gehring U . (2009). Multiple, but Concerted Cellular Activities of the Human Protein Hap46/BAG-1 M and Isoforms. Int J Mol Sci 10: 906–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, May MJ, Kopp EB . (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD, Temin HM . (1988). v-rel oncoproteins in the nucleus and in the cytoplasm transform chicken spleen cells. J Virol 62: 703–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Rosenfeld MG . (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141.

    CAS  PubMed  Google Scholar 

  • Hinitt CA, Wood J, Lee SS, Williams AC, Howarth JL, Glover CP et al. (2010). BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration. Exp Cell Res 316: 2042–2060.

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Guan H, Ricciardi RP . (2003). Phosphorylation of serine 337 of NF-kappaB p50 is critical for DNA binding. J Biol Chem 278: 45994–45998.

    Article  CAS  PubMed  Google Scholar 

  • Inan MS, Tolmacheva V, Wang QS, Rosenberg DW, Giardina C . (2000). Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon. Am J Physiol Gastrointest Liver Physiol 279: G1282–G1291.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Kimchi ET, Staveley-O'Carroll KF, Cheng H, Ajani JA . (2009). Assessment of K-ras mutation: a step toward personalized medicine for patients with colorectal cancer. Cancer 115: 3609–3617.

    Article  CAS  PubMed  Google Scholar 

  • Kaidi A, Williams AC, Paraskeva C . (2007). Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9: 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Kamens J, Richardson P, Mosialos G, Brent R, Gilmore T . (1990). Oncogenic transformation by vrel requires an amino-terminal activation domain. Mol Cell Biol 10: 2840–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karst AM, Gao K, Nelson CC, Li G . (2009). Nuclear factor kappa B subunit p50 promotes melanoma angiogenesis by upregulating interleukin-6 expression. Int J Cancer 124: 494–501.

    Article  CAS  PubMed  Google Scholar 

  • Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O et al. (1990). The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62: 1007–1018.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi R, Noguchi T, Takeno S, Funada Y, Moriyama H, Uchida Y . (2002). Nuclear BAG-1 expression reflects malignant potential in colorectal carcinomas. Br J Cancer 87: 1136–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlden JM, Jones HE, Barrow D, Gee JM, Nicholson RI, Hutcheson IR . (2008). Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat 111: 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Bai L, Chen W, Xu S . (2010). The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 14: 45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Takayama S, Zheng Y, Froesch B, Chen GQ, Zhang X et al. (1998). Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells. J Biol Chem 273: 16985–16992.

    Article  CAS  PubMed  Google Scholar 

  • Maier JV, Volz Y, Berger C, Schneider S, Cato AC . (2010). Depletion of the cellular levels of BAG-1 proteins attenuates phorbol ester-induced downregulation of IκBα and nuclear accumulation of NF-κB. Biochem Biophys Res Commun 401: 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi C, Toi M . (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature Reviews Cancer 5: 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Niyaz Y, Zeiner M, Gehring U . (2001). Transcriptional activation by the human Hsp70-associating protein Hap50. J Cell Sci 114: 1839–1845.

    CAS  PubMed  Google Scholar 

  • Packham G, Brimmell M, Cleveland JL . (1997). Mammalian cells express two differently localized BAG-1 isoforms generated by alternative translation initiation. Biochem J 328: 807–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahl HL . (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  • Pereira SG, Oakley F . (2008). Nuclear factor-kappaB1: regulation and function. Int J Biochem Cell Biol 40: 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND . (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Rorke S, Murphy S, Khalifa M, Chernenko G, Tang SC . (2001). Prognostic significance of BAG-1 expression in nonsmall cell lung cancer. Int J Cancer 95: 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Rosati A, Leone A, Del Valle L, Amini S, Khalili K, Turco MC . (2007). Evidence for BAG3 modulation of HIV-1 gene transcription. J Cell Physiol 210: 676–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryseck RP, Bull P, Takamiya M, Bours V, Siebenlist U, Dobrzanski P et al. (1992). RelB, a new Rel family transcription activator that can interact with p50-NF-kappa B. Mol Cell Biol 12: 674–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz ML, Baeuerle PA . (1991). The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. Embo J 10: 3805–3817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R, Baltimore D . (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716.

    Article  CAS  PubMed  Google Scholar 

  • Sharp A, Crabb SJ, Townsend PA, Cutress RI, Brimmell M, Wang XH et al. (2004). BAG-1 in carcinogenesis. Expert Rev Mol Med 6: 1–15.

    Article  PubMed  Google Scholar 

  • Shindoh M, Adachi M, Higashino F, Yasuda M, Hida K, Nishioka T et al. (2000). BAG-1 expression correlates highly with the malignant potential in early lesions (T1 and T2) of oral squamous cell carcinoma. Oral Oncol 36: 444–449.

    Article  CAS  PubMed  Google Scholar 

  • Smartt HJ, Elder DJ, Hicks DJ, Williams NA, Paraskeva C . (2003). Increased NF-kappaB DNA binding but not transcriptional activity during apoptosis induced by the COX-2-selective inhibitor NS-398 in colorectal carcinoma cells. Br J Cancer 89: 1358–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Takeda M, Morimoto RI . (2001). BAG-1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3: 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K et al. (1998). Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res 58: 3116–3131.

    CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC . (2001). Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3: E237–E241.

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA et al. (1995). Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Thornburg NJ, Pathmanathan R, Raab-Traub N . (2003). Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res 63: 8293–8301.

    CAS  PubMed  Google Scholar 

  • Tong X, Yin L, Washington R, Rosenberg DW, Giardina C . (2004). The p50-p50 NF-kappaB complex as a stimulus-specific repressor of gene activation. Mol Cell Biochem 265: 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Townsend PA, Stephanou A, Packham G, Latchman DS . (2005). BAG-1: a multi-functional pro-survival molecule. Int J Biochem Cell Biol 37: 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Weldon CB, Burow ME, Rolfe KW, Clayton JL, Jaffe BM, Beckman BS . (2001). NF-kappa B-mediated chemoresistance in breast cancer cells. Surgery 130: 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Browne SJ, Yeudal WA, Paterson IC, Marshall CJ, Lane DP et al. (1993). Molecular events including p53 and k-ras alterations in the in vitro progression of a human colorectal adenoma cell line to an adenocarcinoma. Oncogene 8: 3063–3072.

    CAS  PubMed  Google Scholar 

  • Wood J, Lee SS, Hague A . (2009). BAG-1 proteins in oral squamous cell carcinoma. Oral Oncol 45: 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Rabson AB, Young W, Qing G, Qu Z . (2006). Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev 17: 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Chernenko G, Hao Y, Ding Z, Pater MM, Pater A et al. (1998). Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells. Oncogene 17: 981–989.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y . (2001). The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer 4 (Suppl): S3–S8.

    Article  Google Scholar 

  • Zeiner M, Gehring U . (1995). A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci USA 92: 11465–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiner M, Niyaz Y, Gehring U . (1999). The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci USA 96: 10194–10199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, May MJ, Jimi E, Ghosh S . (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9: 625–636.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a Cancer Research UK programme grant, the Citrina Foundation, The Wellcome Trust and by the John James Bristol Foundation. We thank the Medical Research Council for providing an Infrastructure Award to establish the School of Medical Sciences Cell Imaging Facility at the University of Bristol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southern, S., Collard, T., Urban, B. et al. BAG-1 interacts with the p50–p50 homodimeric NF-κB complex: implications for colorectal carcinogenesis. Oncogene 31, 2761–2772 (2012). https://doi.org/10.1038/onc.2011.452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.452

Keywords

This article is cited by

Search

Quick links