Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Extent and distribution of linkage disequilibrium around the SLC11A1 locus

Abstract

The SLC11A1 (or NRAMP1) locus on human chromosome 2q35 encodes for the protein solute carrier family 11, member 1. It is expressed in macrophages and involved in the early stages of macrophage priming and activation. Different association studies have shown that the SLC11A1 gene affects susceptibility to infectious diseases and autoimmune inflammatory diseases. Although functional SLC11A1 polymorphisms may account for its role in affecting the susceptibility to these diseases, the positive association can also be because of flanking polymorphisms showing linkage disequilibrium (LD) with this locus. This is the first systematic study to investigate the LD pattern within and around the gene. LD was investigated by genotyping 17 genetic markers in a Chinese population (n=360). The results indicate that LD is maintained at least 110 kb both upstream and downstream of the locus. The complex LD pattern demands that association studies with SLC11A1 should be carried out with both 5′ and 3′ markers. The strong LD between IL8RB and the 5′ SLC11A1 markers also dictates that IL8RB be tested for association with these diseases. Thus, positive association with SLC11A1 should be interpreted cautiously, and IL8RB should also be considered as a potential candidate susceptibility gene unless proven otherwise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Buu N, Sanchez F, Schurr E . The Bcg host-resistance gene. Clin Infect Dis 2000; 31: S81–S85.

    Article  CAS  PubMed  Google Scholar 

  2. Marquet S, Lepage P, Hudson TJ, Musser JM, Schurr E . Complete nucleotide sequence and genomic structure of the human NRAMP1 gene region on chromosome region 2q35. Mamm Genome 2000; 11: 755–762.

    Article  CAS  PubMed  Google Scholar 

  3. Blackwell JM . Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Mol Med Today 1996; 2: 205–211.

    Article  CAS  PubMed  Google Scholar 

  4. Cellier M, Govoni G, Vidal S et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 1994; 180: 1741–1752.

    Article  CAS  PubMed  Google Scholar 

  5. Cellier M, Shustik C, Dalton W et al. Expression of the human NRAMP1 gene in professional primary phagocytes: studies in blood cells and in HL-60 promyelocytic leukemia. J Leukoc Biol 1997; 61: 96–105.

    Article  CAS  PubMed  Google Scholar 

  6. Barton CH, Biggs TE, Baker ST, Bowen H, Atkinson PG . Nramp1: a link between intracellular iron transport and innate resistance to intracellular pathogens. J Leukoc Biol 1999; 66: 757–762.

    Article  CAS  PubMed  Google Scholar 

  7. Jabado N, Jankowski A, Dougaparsad S et al. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 2000; 192: 1237–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Supek F, Supekova L, Nelson H, Nelson N . A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 1996; 93: 5105–510.

    Article  CAS  Google Scholar 

  9. Goswami T, Bhattacharjee A, Babal P et al. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 2001; 354: 511–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roach TI, Kiderlen AF, Blackwell JM . Role of inorganic nitrogen oxides and tumor necrosis factor alpha in killing Leishmania donovani amastigotes in gamma interferon-lipopolysaccharide-activated macrophages from Lshs and Lshr congenic mouse strains. Infect Immun 1991; 59: 3935–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barton CH, Whitehead SH, Blackwell JM . Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Mol Med 1995; 1: 267–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Govoni G, Vidal S, Gauthier S et al. The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1Gly169 allele. Infect Immun 1996; 64: 2923–2929.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gruenheid S, Pinner E, Desjardins M, Gros P . Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 1997; 185: 717–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellamy R, Ruwende C, Corrah T, McAdam K, Whittle HC, Hill AVS . Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  PubMed  Google Scholar 

  15. Cervino ACL, Lakiss S, Sow O, Hill AVS . Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet 2000; 64: 507–512.

    Article  CAS  PubMed  Google Scholar 

  16. Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S . 3′UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 2000; 4: 577–580.

    CAS  PubMed  Google Scholar 

  17. Gao PS, Fujishima S, Mao XQ et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. Clin Genet 2000; 58: 74–76.

    Article  CAS  PubMed  Google Scholar 

  18. Meisner SJ, Mucklow S, Warner G, Sow SO, Lienhardt C, Hill AV . Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in west Africans. Am J Trop Med Hyg 2001; 65: 733–735.

    Article  CAS  PubMed  Google Scholar 

  19. Marquet S, Sanchez FO, Arias M et al. Variants of the human NRAMP1 gene and altered human immunodeficiency virus infection susceptibility. J Infect Dis 1999;180: 1521–1525.

    Article  CAS  PubMed  Google Scholar 

  20. Singal DP, Li J, Zhu Y, Zhang G . NRAMP1 gene polymorphisms in patients with rheumatoid arthritis. Tissue Antigens 2000; 55: 44–47.

    Article  CAS  PubMed  Google Scholar 

  21. Yang YS, Kim SJ, Kim JW, Koh EM . NRAMP1 gene polymorphisms in patients with rheumatoid arthritis in Koreans. Korean Med Sci 2000; 15: 83–87.

    Article  CAS  Google Scholar 

  22. Sanjeevi CB, Miller EN, Dabadghao P et al. Polymorphism at NRAMP1 and D2S1471 loci associated with juvenile rheumatoid arthritis. Arthritis Rheum 2000; 43: 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  23. Kojima Y, Kinouchi Y, Takahashi S, Negoro K, Hiwatashi N, Shimosegawa T . Inflammatory bowel disease is associated with a novel promoter polymorphism of natural resistance-associated macrophage protein 1 (NRAMP1) gene. Tissue Antigens 2001; 58: 379–384.

    Article  CAS  PubMed  Google Scholar 

  24. Kotze MJ, de Villiers JN, Rooney RN et al. Analysis of the NRAMP1 gene implicated in iron transport: association with multiple sclerosis and age effects. Blood Cells Mol Dis 2001; 27: 44–53.

    Article  CAS  PubMed  Google Scholar 

  25. Maliarik MJ, Chen KM, Sheffer RG et al. The natural resistance-associated macrophage protein gene in African Americans with sarcoidosis. Am J Respir Cell Mol Biol 2000; 22: 672–675.

    Article  CAS  PubMed  Google Scholar 

  26. Bellamy R, Beyers N, McAdam KP et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 2000; 97: 8005–8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaw MA, Collins A, Peacock CS et al. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuber Lung Dis 1997; 78: 35–45.

    Article  CAS  PubMed  Google Scholar 

  28. Siddiqui MR, Meisner S, Tosh K et al. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat Genet 2001; 27: 439–441.

    Article  CAS  PubMed  Google Scholar 

  29. Hill AV . The genomics and genetics of human infectious disease susceptibility. Annu Rev Genom Hum Genet 2001; 2: 373–400.

    Article  CAS  Google Scholar 

  30. Ma X, Wright J, Dou S et al. Ethnic divergence and linkage disequilibrium of novel SNPs in the human NLI-IF gene: evidence of human origin and lack of association with tuberculosis susceptibility. J Hum Genet 2002; 47: 140–145.

    Article  CAS  PubMed  Google Scholar 

  31. Lander ES, Schork NJ . Genetic dissection of complex traits. Science 1994; 265: 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  32. Abecasis GR, Noguchi E, Heinzmann A et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001; 68: 191–197.

    Article  CAS  PubMed  Google Scholar 

  33. Collins A, Lonjou C, Morton NE . Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci USA 1999; 96: 15173–15177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goddard KA, Hopkins PJ, Hall JM, Witte JS . Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet 2000; 66: 216–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reich DE, Cargill M, Bolk S et al. Linkage disequilibrium in the human genome. Nature 2001; 411: 199–204.

    Article  CAS  PubMed  Google Scholar 

  36. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  37. Jorde LB . Linkage disequilibrium and the search for complex disease genes. Genome Res 2000; 10: 1435–1444.

    Article  CAS  PubMed  Google Scholar 

  38. Cardon LR, Bell JI . Association study designs for complex diseases. Nat Rev Genet 2001; 2: 91–99.

    Article  CAS  PubMed  Google Scholar 

  39. Weiss KM, Clark AG . Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002; 18: 19–24.

    Article  CAS  PubMed  Google Scholar 

  40. White JK, Shaw MA, Barton CH et al. Genetic and physical mapping of 2q35 in the region of the NRAMP and IL8R genes: identification of a polymorphic repeat in exon 2 of NRAMP. Genomics 1994;24: 295–302.

    Article  CAS  PubMed  Google Scholar 

  41. Kato H, Tsuchiya N, Tokunaga K . Single nucleotide polymorphisms in the coding regions of human CXC-chemokine receptors CXCR1, CXCR2 and CXCR3. Genes Immun 2000; 1:330–307.

    Article  CAS  Google Scholar 

  42. Liu J, Fujiwara TM, Buu NT et al. Identification of polymorphisms and sequence variants in the human homologue of the mouse natural resistance-associated macrophage protein gene. Am J Hum Genet 1995; 56: 845–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Searle S, Blackwell JM . Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 1999; 36: 295–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Graham AM, Dollinger MM, Howie SE, Harrison DJ . Identification of novel alleles at a polymorphic microsatellite repeat region in the human NRAMP1 gene promoter: analysis of allele frequencies in primary biliary cirrhosis. J Med Genet 2000; 37: 150–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alm JS, Sanjeevi CB, Miller EN et al. Atopy in children in relation to BCG vaccination and genetic polymorphisms at SLC11A1 (formerly NRAMP1) and D2S1471. Genes Immun 2002; 3: 71–77.

    Article  CAS  PubMed  Google Scholar 

  46. Dunstan SJ, Ho VA, Duc CM . Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J Infect Dis 2001; 183:1156–1160.

    Article  CAS  PubMed  Google Scholar 

  47. Roy S, Frodsham A, Saha B, Hazra SK, Mascie-Taylor CG, Hill AV . Association of vitamin D receptor genotype with leprosy type. J Infect Dis 1999; 179:187–191.

    Article  CAS  PubMed  Google Scholar 

  48. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  49. Ott J . A Chi-square test to distinguish allelic association from other causes of phenotypic association between two loci. Genet Epidemiol 1985; 2: 79–84.

    Article  CAS  PubMed  Google Scholar 

  50. Lewontin RC . The interaction of selection and linkage. I. General considerations: heterotic models. Genetics 1964; 49: 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Devlin B, Risch N . A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995; 29: 311–322.

    Article  CAS  PubMed  Google Scholar 

  52. Hedrick PW . Gametic disequilibrium measures: proceed with caution. Genetics 1997; 117: 331–341.

    Google Scholar 

  53. Moffatt MF, Trahern JA, Abecasis GR, Cookson WO . Single nucleotide polymorphism and linkage disequilibrium within the TCR α/δ locus. Hum Mol Genet 2000; 9: 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  54. Weir BS . Genetic Data Analysis II. Sinauer Associates: Sunderland, 1996, pp 133–135.

    Google Scholar 

  55. Singal DP, Li J, Zhu Y, Zhang G . NRAMP1 gene polymorphisms in patients with rheumatoid arthritis. Tissue Antigens 2000; 55: 44–47.

    Article  CAS  PubMed  Google Scholar 

  56. Ardlie KG, Kruglyak L, Seielstad M . Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299–309.

    Article  CAS  PubMed  Google Scholar 

  57. Kruglyak L . Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22: 139–144.

    Article  CAS  PubMed  Google Scholar 

  58. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D . geneCards: Encyclopedia for Genes, Proteins and Diseases. Weizmann Institute of Science, Bioinformatics Unit and Genome Center (Rehovot, Israel), 1997 (WWW URL: http://bioinformatics.weizmann.ac.il/cards).

    Google Scholar 

  59. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI . Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 1992; 267: 16283–16287.

    CAS  PubMed  Google Scholar 

  60. Ahuja SK, Shetty A, Tiffany HL, Murphy PM . Comparison of the genomic organization and promoter function for human interleukin-8 receptors A and B. Nat Genet 1992; 2: 31–36.

    Article  CAS  PubMed  Google Scholar 

  61. Baggiolini M, Dewald B, Moser B . Human chemokines: an update. Annu Rev Immunol 1997; 5: 675–705.

    Article  Google Scholar 

  62. Kunkel SL, Lukacs NW, Strieter RM . The role of interleukin-8 in the infectious process. Ann NY Acad Sci 1994; 730: 134–143.

    Article  CAS  PubMed  Google Scholar 

  63. Murphy PM . Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin Hematol 1997; 34: 311–318.

    CAS  PubMed  Google Scholar 

  64. Juffermans NP, Dekkers PE, Peppelenbosch MP, Speelman P, van Deventer SJ, van Der Poll T . Expression of the chemokine receptors CXCR1 and CXCR2 on granulocytes in human endotoxemia and tuberculosis: involvement of the p38 mitogen-activated protein kinase pathway. J Infect Dis 2000; 182: 888–894.

    Article  CAS  PubMed  Google Scholar 

  65. Meddows-Taylor S, Martin DJ, Tiemessen CT . Reduced expression of interleukin-8 receptors A and B on polymorphonuclear neutrophils from persons with human immunodeficiency virus type 1 disease and pulmonary tuberculosis. J Infect Dis 1998; 177: 921–930.

    Article  CAS  PubMed  Google Scholar 

  66. Brown AE, Holzer TJ, Andersen BR . Capacity of human neutrophils to kill Mycobacterium tuberculosis. J Infect Dis 1987; 156: 985–989.

    Article  CAS  PubMed  Google Scholar 

  67. Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM . Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun 2000; 68: 577–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Edwards SW, Hallett MB . Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 1997; 18: 320–324.

    Article  CAS  PubMed  Google Scholar 

  69. Tchorzewski H, Czernicki J, Maciejek Z . Polymorphonuclear leukocyte lysosome activities and lymphocyte transformation in multiple sclerosis and some other central nervous system chronic diseases. Eur Neurol 1976; 14: 386–396.

    Article  CAS  PubMed  Google Scholar 

  70. Grimm MC, Elsbury SK, Pavli P, Doe WF . Interleukin 8: cells of origin in inflammatory bowel disease. Gut 1996; 38: 90–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids Res 1988; 16: 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T . Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989; 86: 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yip SP . Single-tube multiplex PCR-SSCP analysis distinguishes 7 common ABO alleles and readily identifies new alleles. Blood 2000; 95: 1487–1492.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Yip.

Additional information

This work was financially supported by a Central Research Grant (G-V912) from The Hong Kong Polytechnic University. Purchase of the automated DNA sequencer was supported by a departmental fund (School of Nursing) and two other research grants awarded to SPY (1.53.27.8761 and 1.52.56.A362).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, S., Leung, K. & Lin, C. Extent and distribution of linkage disequilibrium around the SLC11A1 locus. Genes Immun 4, 212–221 (2003). https://doi.org/10.1038/sj.gene.6363944

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363944

Keywords

This article is cited by

Search

Quick links