Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Transient cyclophosphamide treatment before intraportal readministration of an adenoviral vector can induce re-expression of the original gene construct in rat liver

Abstract

Although adenovirus is an attractive vehicle for transferring therapeutic genes in vivo, animal studies have indicated that the clinical usefulness of adenoviruses may be limited by their immunogenicity. Although immunosuppressive strategies around the time of initial exposure of adenoviruses have been shown to prevent the formation of neutralizing antibodies and permit the successful readministration of adenoviruses in animals, the practicality of the approaches remains questionable. Because the majority of prospective gene therapy patients have already been infected with wild-type adenoviruses, initial treatment with adenoviruses in humans may correspond to readministration of adenoviruses into animals. It is shown here that although intraportal infusion of adenoviruses carrying a reporter lacZ gene resulted in transient high levels of transgene expression in the rat liver, intraportal readministration of adenoviruses failed to induce detectable levels of transgene expression. Conversely, when animals were treated transiently with cyclophosphamide before the intraportal readministration of adenoviruses, development of neutralizing antibodies and antigen-specific T cell proliferation in response to adenoviral readministration was significantly suppressed and successful re-expression of the transgene was achievable. These results may have important implications for efficacy considerations when adenoviral vectors are employed in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Strauss SE . Adenovirus infections in humans. In: Ginsberg HS (ed) . The Adenoviruses Plenum Press: New York 1984 451–496

    Google Scholar 

  2. Rosenfeld MA et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium Cell 1992 68: 143–155

    Article  CAS  PubMed  Google Scholar 

  3. Zabner J et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis Cell 1993 75: 207–216

    Article  CAS  PubMed  Google Scholar 

  4. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    Article  CAS  PubMed  Google Scholar 

  5. Stratford-Perricaudet LD et al. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector Hum Gene Ther 1990 1: 241–256

    Article  CAS  PubMed  Google Scholar 

  6. Jaffe H . Adenovirus-mediated in vivo gene transfer and expression in normal rat liver Nature 1992 1: 372–378

    CAS  Google Scholar 

  7. Kay MA et al. In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs Proc Natl Acad Sci USA 1994 91: 2353–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishibashi S et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery J Clin Invest 1993 92: 883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kozarsky KF et al. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe Heritable hyperlipidemic rabbit with recombinant adenoviruses J Biol Chem 1994 269: 13695–13702

    CAS  PubMed  Google Scholar 

  10. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Li Q, Ertl HCJ, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaplan JM et al. Humoral and cellular immune responses of nonhuman primates to long-term repeated lung exposure to Ad2/CFTR-2 Gene Therapy 1996 3: 117–127

    CAS  PubMed  Google Scholar 

  13. Fang B et al. Lack of persistence of E1-recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs Gene Therapy 1996 3: 217–222

    CAS  PubMed  Google Scholar 

  14. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Engelhardt JF, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver Proc Natl Acad Sci USA 1994 91: 6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yei S et al. Adenovirus-mediated gene transfer for cystic fibrosis: quantitative evaluation of repeated in vivo vector administration to the lung Gene Therapy 1994 1: 192–200

    CAS  PubMed  Google Scholar 

  18. Dong J-Y et al. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector Hum Gene Ther 1996 7: 319–331

    Article  CAS  PubMed  Google Scholar 

  19. Ilan Y et al. Oral tolerization to adenoviral proteins permits repeated adenovirus-mediated gene therapy in rats with pre-existing immunity to adenoviruses Hepatology 1998 27: 1368–1376

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Trinchieri G, Wilson JM . Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung Nature Med 1995 1: 890–893

    Article  CAS  PubMed  Google Scholar 

  21. Weinberg A et al. Enzyme linked immunosorbent assay: determination of anti-adenovirus antibodies in an infant population Rev Inst Med Trop São Paulo 1989 31: 336–340

    Article  CAS  PubMed  Google Scholar 

  22. Rosenecker J et al. Adenovirus infection in cystic fibrosis patients: implication for the use of adenoviral vectors for gene transfer Infection 1996 24: 5–8

    Article  CAS  PubMed  Google Scholar 

  23. Kuriyama S et al. Inhibitory effects of human sera on adenovirus-mediated gene transfer into rat liver Anticancer Res 1998 18: 2345–2352

    CAS  PubMed  Google Scholar 

  24. Vilquin J-T et al. FK506 immunosuppression to control the immune reactions triggered by first generation adenovirus-mediated gene transfer Hum Gene Ther 1995 6: 1391–1401

    Article  CAS  PubMed  Google Scholar 

  25. Jooss K, Yang Y, Wilson JM . Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung Hum Gene Ther 1996 7: 1555–1566

    Article  CAS  PubMed  Google Scholar 

  26. Smith TAG et al. Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector Gene Therapy 1996 3: 496–502

    CAS  PubMed  Google Scholar 

  27. Ilan Y et al. Transient immunosuppression with FK506 permits long-term expression of therapeutic genes introduced into the liver using recombinant adenoviruses in the rat Hepatology 1997 26: 949–956

    Article  CAS  PubMed  Google Scholar 

  28. Lei D et al. Nondepleting anti-CD4 antibody treatment prolongs lung-directed E1-deleted adenovirus-mediated gene expression in rats Hum Gene Ther 1996 7: 2273–2279

    Article  CAS  PubMed  Google Scholar 

  29. Scaria A et al. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway Gene Therapy 1997 4: 611–617

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y et al. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues J Virol 1996 70: 6370–6377

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kay MA et al. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver Proc Natl Acad Sci USA 1997 94: 4686–4691,

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jooss K, Turka LA, Wilson JM . Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig Gene Therapy 1998 5: 309–319

    Article  CAS  PubMed  Google Scholar 

  33. Weiss A . T lymphocyte activation. In: Paul WE (ed) . Fundamental Immunology Raven Press: New York 1993 467–504

    Google Scholar 

  34. Kaplan JM, Smith AE . Transient immunosuppression with deoxyspergualin improves longevity of transgene expression and ability to readminister adenoviral vector to the mouse lung Hum Gene Therapy 1997 8: 1095–1104

    Article  CAS  Google Scholar 

  35. Wang Q et al. Persistent transgene expression in mouse liver following in vivo gene transfer with a ΔE1/ΔE4 adenovirus vector Gene Therapy 1997 4: 393–400

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura Y et al. Adoptive immunotherapy with murine tumor-specific T lymphocytes engineered to secrete interleukin 2 Cancer Res 1994 54: 5757–5760

    CAS  PubMed  Google Scholar 

  37. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector Gene 1991 108: 193–200

    Article  CAS  PubMed  Google Scholar 

  38. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome Proc Natl Acad Sci USA 1996 93: 1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graham FL, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ (ed) . Methods in Molecular Biology Humana Press: Clifton 1991 109–128

    Google Scholar 

  40. Kuriyama S et al. A potential approach for gene therapy targeting hepatoma using a liver-specific promoter on a retroviral vector Cell Struct Funct 1991 16: 503–510

    Article  CAS  PubMed  Google Scholar 

  41. MacGregor GR et al. Use of E. coli lac Z (β-galactosidase) as a reporter gene. In: Murray EJ (ed) . Methods in Molecular Biology Humana Press: Clifton 1991 217–235

    Google Scholar 

  42. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver Gene Therapy 1996 3: 412–420

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuriyama, S., Tominaga, K., Kikukawa, M. et al. Transient cyclophosphamide treatment before intraportal readministration of an adenoviral vector can induce re-expression of the original gene construct in rat liver. Gene Ther 6, 749–757 (1999). https://doi.org/10.1038/sj.gt.3300894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300894

Keywords

This article is cited by

Search

Quick links