Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma

Abstract

The development of cervical cancer is highly associated with human papillomavirus (HPV) infection. Greater than 99% of all cervical tumors contain HPV DNA. Integration of high-risk HPV has been temporally associated with the acquisition of a malignant phenotype. Recent work from our lab has shown that HPV16, the most common high-risk HPV associated with cervical carcinoma, preferentially integrates at loci containing human common fragile sites (CFSs). CFSs are regions of genomic instability that have also been associated with deletions, translocations, and gene amplification during cancer development. The current work shows that HPV18, the second most prevalent high-risk HPV type found in cervical tumors, preferentially targets the CFSs. We identified 27 unique HPV18 integrations in cervical tumors, of which 63% (P<0.001) occur in CFSs. However, the distribution of HPV18 integrations found were profoundly different from those found for HPV16. Specifically, 30% of all HPV18 integrations occurred within the chromosomal band 8q24 near the c-myc proto-oncogene. None of the HPV16 integrations occurred in this region. Previous low-resolution mapping suggested that c-myc may be a target of HPV integration. Our data at nucleotide resolution confirm that in HPV18-positive cervical tumors, the region surrounding c-myc is indeed a hot spot of viral integration. These results demonstrate that CFSs are preferred sites of integration for HPV18 in cervical tumors. In addition, we have identified multiple cellular genes that have been disrupted by HPV18 integration in cervical tumors. Our results suggest that the sites of HPV18 integration are nonrandom and may play an important role in the development of cervical tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahmad SI, Hanaoka F and Kirk SH . (2002). BioEssays, 24, 439–448.

  • Bechtold V, Beard P and Raj K . (2003). J. Virol., 77, 2021–2028.

  • Boldog FL, Gemmill RM, Wilke CM, Glover TW, Nilsson AS, Chandrasekharappa SC, Brown RS, Li FP and Drabkin HA . (1993). Proc. Natl. Acad. Sci. USA, 90, 8509–8513.

  • Bosch FX, Lorincz A, Munoz N, Meijer CJ and Shah KV . (2002). J. Clin. Pathol., 55, 244–265.

  • Boxer LM and Dang CV . (2001). Oncogene, 20, 5595–5610.

  • Boyer SN, Wazer DE and Band V . (1996). Cancer Res., 56, 4620–4624.

  • Brink AA, Wiegant JC, Szuhai K, Tanke HJ, Kenter GG, Fleuren GJ, Schuuring E and Raap AK . (2002). Cancer Genet. Cytogenet., 134, 145–150.

  • Casper AM, Nghiem P, Arlt MF and Glover TW . (2002). Cell, 111, 779–789.

  • Cha RS and Kleckner N . (2002). Science, 297, 602–606.

  • Cho KR . (1998). The Genetic Basis of Human Cancer. Vogelstein B and Kinzler K (eds). McGraw-Hill: New York, pp. 631–637.

    Google Scholar 

  • Couturier J, Sastre-Garau X, Schneider-Maunoury S, Labib A and Orth G . (1991). J. Virol., 65, 4534–4538.

  • Crook T, Storey A, Almond N, Osborn K and Crawford L . (1988). Proc. Natl. Acad. Sci. USA, 85, 8820–8824.

  • Cullen AP, Reid R, Campion M and Lorincz AT . (1991). J. Virol., 65, 606–612.

  • Durst M, Croce CM, Gissmann L, Schwarz E and Huebner K . (1987). Proc. Natl. Acad. Sci. USA, 84, 1070–1074.

  • Eidelman FJ, Fuks A, DeMarte L, Taheri M and Stanners CP . (1993). J. Cell Biol., 123, 467–475.

  • Ferber MJ, Montoya DP, Yu C, Aderca I, McGee A, Thorland EC, Nagorney DM, Gostout BS, Burgart LJ, Boix L, Bruix J, McMahon BJ, Cheung TH, Chung TK, Wong YF, Smith DI and Roberts LR . (2003). Oncogene, 24, 3813–3820.

  • Fretland AJ and Omiecinski CJ . (2000). Chem. Biol. Interact., 129, 41–59.

  • Gallego MI, Schoenmakers EF, Van de Ven WJ and Lazo PA . (1997). Mol. Carcinogen., 19, 114–121.

  • Glover TW, Berger C, Coyle J and Echo B . (1984). Hum. Genet., 67, 136–142.

  • Glover TW and Stein CK . (1987). Am. J. Hum. Genet., 41, 882–890.

  • Glover TW and Stein CK . (1988). Am. J. Hum. Genet., 43, 265–273.

  • Gonzalez GA and Montminy MR . (1989). Cell, 59, 675–680.

  • Greenspan DL, Connolly DC, Wu R, Lei RY, Vogelstein JT, Kim YT, Mok JE, Munoz N, Bosch FX, Shah K and Cho KR . (1997). Cancer Res., 57, 4692–4698.

  • Ham J, Dostatni N, Gauthier JM and Yaniv M . (1991). Trends Biochem. Sci., 16, 440–444.

  • Howley PM . (1996). Fields Virology, 3rd edn. Fields B, Howley PM, Griffin DE, Lamb RA, Martin MA, Roitman B, Straus SE and Knipe DM (eds). Lippincott-Raven: Philadelphia, pp. 2045–2076.

    Google Scholar 

  • Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR and Schiller JT . (1989). EMBO J., 8, 3905–3910.

  • Huebner K, Garrison PN, Barnes LD and Croce CM . (1998). Annu. Rev. Genet., 32, 7–31.

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW . (1994). Science, 266, 2011–2015.

  • Koopman LA, Szuhai K, van Eendenburg JD, Bezrookove V, Kenter GG, Schuuring E, Tanke H and Fleuren GJ . (1999). Cancer Res., 59, 5615–5624.

  • Kurman RJ, Schiffman MH, Lancaster WD, Reid R, Jenson AB, Temple GF and Lorincz AT . (1988). Am. J. Obstet. Gynecol., 159, 293–296.

  • Lazo PA, DiPaolo JA and Popescu NC . (1989). Cancer Res., 49, 4305–4310.

  • Le Beau MM, Drabkin H, Glover TW, Gemmill R, Rassool FV, McKeithan TW and Smith DI . (1998). Genes Chromosomes Cancer, 21, 281–289.

  • Liu CX, Musco S, Lisitsina NM, Yaklichkin SY and Lisitsyn NA . (2000). Genomics, 69, 271–274.

  • Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, Popescu N and Ried T . (1999). Cancer Res., 59, 141–150.

  • Mayr B and Montminy M . (2001). Nat. Rev. Mol. Cell. Biol., 2, 599–609.

  • McBride AA, Romanczuk H and Howley PM . (1991). J. Biol. Chem., 266, 18411–18414.

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA and Weinberg RA . (1997). Cell, 90, 785–795.

  • Munger K . (2002). Front. Biosci., 7, d641–d649.

  • Pelengaris S, Khan M and Evan G . (2002). Nat. Rev. Cancer, 2, 764–776.

  • Pillutla RC, Shimamoto A, Furuichi Y and Shatkin AJ . (1998). Genomics, 54, 351–353.

  • Popescu NC and DiPaolo JA . (1989). Cancer Genet. Cytogenet., 42, 157–171.

  • Popescu NC, Zimonjic D and DiPaolo JA . (1990). Hum. Genet., 84, 383–386.

  • Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa Rd and Le Beau MM . (1991). Proc. Natl. Acad. Sci. USA, 88, 6657–6661.

  • Ratsch A, Joos S, Kioschis P and Lichter P . (2002). Exp. Cell Res., 273, 12–20.

  • Sarkar G, Turner RT and Bolander ME . (1993). PCR Methods Appl., 2, 318–322.

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM . (1990). Cell, 63, 1129–1136.

  • Schwartz SM, Daling JR, Shera KA, Madeleine MM, McKnight B, Galloway DA, Porter PL and McDougall JK . (2001). J. Clin. Oncol., 19, 1906–1915.

  • Shah KV and Howley PM . (1996). Fields Virology, 3rd edn. Fields BN, Howley PM, Griffin DE, Lamb RA, Martin MA, Roitman B, Straus SE and Knipe DM. (eds). Lippincott-Raven: Philadelphia, pp. 2077–2109.

    Google Scholar 

  • Simmons DL, Satterthwaite AB, Tenen DG and Seed B . (1992). J. Immunol., 148, 267–271.

  • Thorland EC, Myers SL, Gostout BS and Smith DI . (2003). Oncogene, 22, 1225–1237.

  • Thorland EC, Myers SL, Persing DH, Sarkar G, McGovern RM, Gostout BS and Smith DI . (2000). Cancer Res., 60, 5916–5921.

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Munoz N . (1999). J. Pathol., 189, 12–19.

  • Wentzensen N, Ridder R, Klaes R, Vinokurova S, Schaefer U and Doeberitz MK . (2002). Oncogene, 21, 419–426.

  • Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI and Glover TW . (1996). Hum. Mol. Genet., 5, 187–195.

  • Woodworth CD, Doniger J and DiPaolo JA . (1989). J. Virol., 63, 159–164.

  • Zimonjic DB, Druck T, Ohta M, Kastury K, Croce CM, Popescu NC and Huebner K . (1997). Cancer Res., 57, 1166–1170.

  • zur Hausen H . (1991). Virology, 184, 9–13.

Download references

Acknowledgements

We thank Gert Jan Fleuren and Ed Schuuring for their contributions to this paper. This study was conducted as a part of MJF's doctoral thesis requirements in the Mayo Graduate School. DIS was supported by NCI Grant CA 48031. AATPB was financially supported by the Vanderes Foundation, Leiden, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferber, M., Thorland, E., Brink, A. et al. Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. Oncogene 22, 7233–7242 (2003). https://doi.org/10.1038/sj.onc.1207006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207006

Keywords

This article is cited by

Search

Quick links