Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling

Abstract

Aberrant regulation of signalling mechanisms that normally orchestrate embryonic development, such as the Hedgehog, Wnt and Notch pathways, is a common feature of tumorigenesis. In order to better understand the neoplastic events mediated by Hedgehog signalling, we identified over 200 genes regulated by Sonic Hedgehog in multipotent mesodermal cells. Widespread crosstalk with other developmental signalling pathways is evident, suggesting a complex network of interactions that challenges the often over-simplistic representation of these pathways as simple linear entities. Hes1, a principal effector of the Notch pathway, was found to be a target of Sonic Hedgehog in both C3H/10T1/2 mesodermal and MNS70 neural cells. Desert Hedgehog also elicited a strong Hes1 response. While Smoothened function was found necessary for upregulation of Hes1 in response to Sonic Hedgehog, the mechanism does not require γ-secretase-mediated cleavage of Notch receptors, and appears to involve transcription factors other than RBP-Jκ. Thus, we have defined a novel mechanism for Hes1 regulation in stem-like cells that is independent of canonical Notch signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alexandre C, Lecourtois M, Vincent J . (1999). Wingless and Hedgehog pattern Drosophila denticle belts by regulating the production of short-range signals. Development 126: 5689–5698.

    CAS  Google Scholar 

  • Allenspach EJ, Maillard I, Aster JC, Pear WS . (2002). Notch signaling in cancer. Cancer Biol Ther 1: 466–476.

    Article  Google Scholar 

  • Amundson SA, Myers TG, Fornace Jr AJ . (1998). Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17: 3287–3299.

    Article  Google Scholar 

  • Baonza A, Freeman M . (2001). Notch signalling and the initiation of neural development in the Drosophila eye. Development 128: 3889–3898.

    CAS  Google Scholar 

  • Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U et al. (2003). Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163: 723–728.

    Article  CAS  Google Scholar 

  • Borzillo GV, Lippa B . (2005). The Hedgehog signaling pathway as a target for anticancer drug discovery. Curr Top Med Chem 5: 147–157.

    Article  CAS  Google Scholar 

  • Chakraborty PK, Ghosh A, Chowdhury JR . (1984). Ceruloplasmin in human malignancies. Acta Med Okayama 38: 315–320.

    CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA . (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16: 2743–2748.

    Article  CAS  Google Scholar 

  • Dakubo GD, Mazerolle CJ, Wallace VA . (2006). Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 79: 221–227.

    Article  CAS  Google Scholar 

  • Das I, Craig C, Funahashi Y, Jung KM, Kim TW, Byers R et al. (2004). Notch oncoproteins depend on gamma-secretase/presenilin activity for processing and function. J Biol Chem 279: 30771–30780.

    Article  CAS  Google Scholar 

  • Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6: 314–322.

    Article  CAS  Google Scholar 

  • Eichberger T, Sander V, Schnidar H, Regl G, Kasper M, Schmid C et al. (2006). Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics 87: 616–632.

    Article  CAS  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  Google Scholar 

  • Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D et al. (2004). Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64: 7787–7793.

    Article  CAS  Google Scholar 

  • Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H et al. (2002). Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 1: 1–10.

    Article  Google Scholar 

  • Fu W, Baker NE . (2003). Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 130: 5229–5239.

    Article  CAS  Google Scholar 

  • Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C . (2002). A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3: 688–694.

    Article  CAS  Google Scholar 

  • Goodrich LV, Scott MP . (1998). Hedgehog and patched in neural development and disease. Neuron 21: 1243–1257.

    Article  CAS  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851.

    Article  CAS  Google Scholar 

  • Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al. (2004). The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64: 7794–7800.

    Article  CAS  Google Scholar 

  • Hansson EM, Lendahl U, Chapman G . (2004). Notch signaling in development and disease. Semin Cancer Biol 14: 320–328.

    Article  CAS  Google Scholar 

  • Hays R, Buchanan KT, Neff C, Orenic TV . (1999). Patterning of Drosophila leg sensory organs through combinatorial signaling by hedgehog, decapentaplegic and wingless. Development 126: 2891–2899.

    CAS  Google Scholar 

  • Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R et al. (2000). A concise guide to cDNA microarray analysis. Biotechniques 29: 548–550, 552–554, 556 passim.

    Article  CAS  Google Scholar 

  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K et al. (2002). Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298: 840–843.

    Article  CAS  Google Scholar 

  • Ingram WJ, Wicking CA, Grimmond SM, Forrest AR, Wainwright BJ . (2002). Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene 21: 8196–8205.

    Article  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y . (2003). HES and HERP families: multiple effectors of the Notch signalling pathway. J Cell Physiol 194: 237–255.

    Article  CAS  Google Scholar 

  • Iso T, Sartorelli V, Chung G, Shichinohe T, Kedes L, Hamamori Y . (2001). HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol 21: 6071–6079.

    Article  CAS  Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . (1995). Signalling downstream of activated mammalian Notch. Nature 377: 355–358.

    Article  CAS  Google Scholar 

  • Jia J, Jiang J . (2006). Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63: 1249–1265.

    Article  CAS  Google Scholar 

  • Johansson FK, Goransson H, Westermark B . (2005). Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24: 3896–3905.

    Article  CAS  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671.

    Article  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R . (2005). Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306: 343–348.

    Article  CAS  Google Scholar 

  • Kappler R, Bauer R, Calzada-Wack J, Rosemann M, Hemmerlein B, Hahn H . (2004a). Profiling the molecular difference between Patched- and p53-dependent rhabdomyosarcoma. Oncogene 23: 8785–8795.

    Article  CAS  Google Scholar 

  • Kappler R, Hess I, Schlegel J, Hahn H . (2004b). Transcriptional up-regulation of Gadd45a in Patched-associated medulloblastoma. Int J Oncol 25: 113–120.

    CAS  Google Scholar 

  • Kato M, Seki N, Sugano S, Hashimoto K, Masuho Y, Muramatsu M et al. (2001). Identification of sonic hedgehog-responsive genes using cDNA microarray. Biochem Biophys Res Commun 289: 472–478.

    Article  CAS  Google Scholar 

  • Kinto N, Iwamoto M, Enomoto-Iwamoto M, Noji S, Ohuchi H, Yoshioka H et al. (1997). Fibroblasts expressing Sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Lett 404: 319–323.

    Article  CAS  Google Scholar 

  • Kunapuli SP, Singh H, Singh P, Kumar A . (1987). Ceruloplasmin gene expression in human cancer cells. Life Sci 40: 2225–2228.

    Article  CAS  Google Scholar 

  • Kwon C, Hays R, Fetting J, Orenic TV . (2004). Opposing inputs by Hedgehog and Brinker define a stripe of hairy expression in the Drosophila leg imaginal disc. Development 131: 2681–2692.

    Article  CAS  Google Scholar 

  • Li X, Gu W, Mohan S, Baylink DJ . (2002). DNA microarrays: their use and misuse. Microcirculation 9: 13–22.

    Article  CAS  Google Scholar 

  • Lowndes SA, Harris AL . (2004). Copper chelation as an antiangiogenic therapy. Oncol Res 14: 529–539.

    Article  CAS  Google Scholar 

  • Martinez Arias A, Zecchini V, Brennan K . (2002). CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12: 524–533.

    Article  Google Scholar 

  • McGlinn E, van Bueren KL, Fiorenza S, Mo R, Poh AM, Forrest A et al. (2005). Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mech Dev 122: 1218–1233.

    Article  CAS  Google Scholar 

  • Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U et al. (1997). RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol 17: 2679–2687.

    Article  CAS  Google Scholar 

  • Mumm JS, Kopan R . (2000). Notch signaling: from the outside in. Dev Biol 228: 151–165.

    Article  CAS  Google Scholar 

  • Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R et al. (2005). Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25: 4262–4271.

    Article  CAS  Google Scholar 

  • Nakagawa Y, Kaneko T, Ogura T, Suzuki T, Torii M, Kaibuchi K et al. (1996). Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells. Development 122: 2449–2464.

    CAS  Google Scholar 

  • Nakamura T, Aikawa T, Iwamoto-Enomoto M, Iwamoto M, Higuchi Y, Pacifici M et al. (1997). Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun 237: 465–469.

    Article  CAS  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336.

    Article  CAS  Google Scholar 

  • Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT et al. (2005). Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132: 2425–2439.

    Article  CAS  Google Scholar 

  • Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P, Bumcrot D et al. (2001). Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Dev 106: 107–117.

    Article  CAS  Google Scholar 

  • Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J et al. (1997). Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57: 2085–2088.

    CAS  Google Scholar 

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436–442.

    Article  CAS  Google Scholar 

  • Reznikoff CA, Brankow DW, Heidelberger C . (1973). Establishment and characterization of a cloned line of C3 H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res 33: 3231–3238.

    CAS  Google Scholar 

  • Senra Varela A, Lopez Saez JJ, Quintela Senra D . (1997). Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Lett 121: 139–145.

    Article  CAS  Google Scholar 

  • Shawber C, Nofziger D, Hsieh JJ, Lindsell C, Bogler O, Hayward D et al. (1996). Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122: 3765–3773.

    CAS  Google Scholar 

  • Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME . (2001). Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31: 557–568.

    Article  CAS  Google Scholar 

  • van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS et al. (2003). Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163: 1033–1043.

    Article  CAS  Google Scholar 

  • Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23: 655–664.

    Article  CAS  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Rosen JM . (2005). On mammary stem cells. J Cell Sci 118: 3585–3594.

    Article  CAS  Google Scholar 

  • Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S et al. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23: 3444–3453.

    Article  CAS  Google Scholar 

  • Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA et al. (2002). Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277: 5548–5555.

    Article  CAS  Google Scholar 

  • Zhao Q, Kho A, Kenney AM, Yuk Di DI, Kohane I, Rowitch DH . (2002). Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proc Natl Acad Sci USA 99: 5704–5709.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The following people kindly provided plasmids: Dr J Aster (pcDNA3-ΔE and pcDNA3-ICTX), Dr J Kitajewski (pGA981-6), Dr U Lendahl (pMIKneo-RBP(R218H)) and Dr D Solecki (pGL2-hHes1-prom-850). The MNS70 line was a gift of Dr M Nakafuku and Dr H Sasaki. D Ingram wrote software for the automated batch handling of microarray data files and provided helpful advice. Supported by the National Health and Medical Research Council of Australia, and the ARC Centre for Functional and Applied Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Wainwright.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingram, W., McCue, K., Tran, T. et al. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27, 1489–1500 (2008). https://doi.org/10.1038/sj.onc.1210767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210767

Keywords

This article is cited by

Search

Quick links