Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level

Abstract

Metformin is a widely used antidiabetic agent, which regulates glucose homeostasis through inhibition of liver glucose production and an increase in muscle glucose uptake. Recent studies suggest that metformin may reduce the risk of cancer, but its mode of action in cancer remains not elucidated. We investigated the effect of metformin on human prostate cancer cell proliferation in vitro and in vivo. Metformin inhibited the proliferation of DU145, PC-3 and LNCaP cancer cells with a 50% decrease of cell viability and had a modest effect on normal prostate epithelial cell line P69. Metformin did not induce apoptosis but blocked cell cycle in G0/G1. This blockade was accompanied by a strong decrease of cyclin D1 protein level, pRb phosphorylation and an increase in p27kip protein expression. Metformin activated the AMP kinase pathway, a fuel sensor signaling pathway. However, inhibition of the AMPK pathway using siRNA against the two catalytic subunits of AMPK did not prevent the antiproliferative effect of metformin in prostate cancer cells. Importantly, oral and intraperitoneal treatment with metformin led to a 50 and 35% reduction of tumor growth, respectively, in mice bearing xenografts of LNCaP. Similar, to the in vitro study, metformin led to a strong reduction of cyclin D1 protein level in tumors providing evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent epidemiological studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AICAR:

5 amino-imidazol-4-carboxamide-1-β-4-ribofuranoside

ACC:

Acetyl Coenzyme-A Carboxylase

AMPK:

AMP-activated protein kinase

pRb:

retinoblastoma protein

References

  • Alao JP . (2007). The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6: 24.

    Article  PubMed  Google Scholar 

  • An D, Kewalramani G, Chan JK, Qi D, Ghosh S, Pulinilkunnil T et al. (2006). Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49: 2174–2184. Epub 2006 Jul 26.

    Article  CAS  PubMed  Google Scholar 

  • Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binetruy B, Bost F . (2006). Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 55: 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D . (1999). The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 19: 1938–1949.

    Article  CAS  PubMed  Google Scholar 

  • Bost F, McKay R, Dean NM, Potapova O, Mercola D . (2000). Antisense methods for discrimination of phenotypic properties of closely related gene products: Jun kinase family. Methods Enzymol 314: 342–362.

    Article  CAS  PubMed  Google Scholar 

  • Campbell IW . (1985). Metformin and the sulphonylureas: the comparative risk. Horm Metab Res Suppl 15: 105–111.

    CAS  PubMed  Google Scholar 

  • Chen Y, Martinez LA, LaCava M, Coghlan L, Conti CJ . (1998). Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene 16: 1913–1920.

    Article  CAS  PubMed  Google Scholar 

  • Collins SP, Reoma JL, Gamm DM, Uhler MD . (2000). LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345: 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Dagon Y, Avraham Y, Berry EM . (2006). AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun 340: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA et al. (2006). Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 66: 11897–11906.

    Article  CAS  PubMed  Google Scholar 

  • Denmeade SR, Isaacs JT . (2004). Development of prostate cancer treatment: the good news. Prostate 58: 211–224.

    Article  CAS  PubMed  Google Scholar 

  • Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N et al. (2005). Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54: 2179–2187.

    Article  CAS  PubMed  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  PubMed  Google Scholar 

  • Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C . (2000). Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 6: 1891–1895.

    CAS  PubMed  Google Scholar 

  • El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X . (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y et al. (2006). Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmacol 72: 427–436.

    Article  CAS  Google Scholar 

  • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304–1305.

    Article  PubMed  Google Scholar 

  • Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D et al. (2006). 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55: 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Han EK, Lim JT, Arber N, Rubin MA, Xing WQ, Weinstein IB . (1998). Cyclin D1 expression in human prostate carcinoma cell lines and primary tumors. Prostate 35: 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG . (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179–5183.

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Gadalla AE, Olsen GS, Hardie DG . (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51: 2420–2425.

    Article  CAS  Google Scholar 

  • Herrant M, Jacquel A, Marchetti S, Belhacene N, Colosetti P, Luciano F et al. (2004). Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 23: 7863–7873.

    Article  CAS  PubMed  Google Scholar 

  • Hunter T . (1997). Oncoprotein networks. Cell 88: 333–346.

    Article  CAS  PubMed  Google Scholar 

  • Ibanez L, Ong K, Valls C, Marcos MV, Dunger DB, de Zegher F . (2006). Metformin treatment to prevent early puberty in girls with precocious pubarche. J Clin Endocrinol Metab 91: 2888–2891.

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG . (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1: 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK et al. (2007). AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal 19: 791–805.

    Article  CAS  PubMed  Google Scholar 

  • Libertini SJ, Tepper CG, Guadalupe M, Lu Y, Asmuth DM, Mudryj M . (2006). E2F1 expression in LNCaP prostate cancer cells deregulates androgen dependent growth, suppresses differentiation, and enhances apoptosis. Prostate 66: 70–81.

    Article  CAS  PubMed  Google Scholar 

  • Lord JM, Flight IH, Norman RJ . (2003). Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 327: 951–953.

    Article  CAS  PubMed  Google Scholar 

  • Loubat A, Rochet N, Turchi L, Rezzonico R, Far DF, Auberger P et al. (1999). Evidence for a p23 caspase-cleaved form of p27[KIP1] involved in G1 growth arrest. Oncogene 18: 3324–3333.

    Article  CAS  PubMed  Google Scholar 

  • Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N . (2001). Metformin in non-alcoholic steatohepatitis. Lancet 358: 893–894.

    Article  CAS  PubMed  Google Scholar 

  • Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY . (1994). D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14: 2066–2076.

    Article  CAS  PubMed  Google Scholar 

  • Park C, Lee I, Kang WK . (2006). Influence of small interfering RNA corresponding to ets homologous factor on senescence-associated modulation of prostate carcinogenesis. Mol Cancer Ther 5: 3191–3196.

    Article  CAS  PubMed  Google Scholar 

  • Perry JE, Grossmann ME, Tindall DJ . (1998). Epidermal growth factor induces cyclin D1 in a human prostate cancer cell line. Prostate 35: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Plymate SR, Tennant M, Birnbaum RS, Thrasher JB, Chatta G, Ware JL . (1996). The effect on the insulin-like growth factor system in human prostate epithelial cells of immortalization and transformation by simian virus-40 T antigen. J Clin Endocrinol Metab 81: 3709–3716.

    CAS  PubMed  Google Scholar 

  • Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M et al. (2003). AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand 178: 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ et al. (2001). Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120: 1263–1270.

    Article  CAS  PubMed  Google Scholar 

  • Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C et al. (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386: 804–810.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66: 10269–10273.

    Article  CAS  Google Scholar 

  • Zhang Y, Howell RD, Alfonso DT, Yu J, Kong L, Wittig JC et al. (2007). IFI16 inhibits tumorigenicity and cell proliferation of bone and cartilage tumor cells. Front Biosci 12: 4855–4863.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167–1174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by INSERM, a grant from Association pour la Recherche sur le Cancer (grant# 3701); Association pour la Recherche sur les tumeurs de la Prostate (ARTP). We thank Dan Mercola for the cells, Gilles Ponzio for scientific discussions, V Corcelle for reading the manuscript. F Bost and JF Tanti are CNRS investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Bost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahra, I., Laurent, K., Loubat, A. et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576–3586 (2008). https://doi.org/10.1038/sj.onc.1211024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211024

Keywords

This article is cited by

Search

Quick links