Semin Liver Dis 2010; 30(3): 232-244
DOI: 10.1055/s-0030-1255353
© Thieme Medical Publishers

Toll-like Receptor 4 and Hepatic Fibrogenesis

Jean-Philippe Pradere1 , Juliane S. Troeger1 , Dianne H. Dapito2 , Ali A. Mencin1 , Robert F. Schwabe1 , 2
  • 1Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York
  • 2The Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, New York, New York
Further Information

Publication History

Publication Date:
21 July 2010 (online)

ABSTRACT

Inflammation is strongly associated with chronic hepatic injury and the ensuing wound-healing process. Recent evidence from mouse models and human studies implicates Toll-like receptors (TLRs) as important regulators of the inflammatory response and a functional link between inflammation and fibrosis in the chronically injured liver. Here, we review mechanisms by which TLR4 and TLR4 ligands from the intestinal microbiota contribute to hepatic injury, inflammation, hepatic stellate cell activation, and fibrosis.

REFERENCES

  • 1 Janeway Jr C A. Approaching the asymptote? Evolution and revolution in immunology.  Cold Spring Harb Symp Quant Biol. 1989;  54(Pt 1) 1-13
  • 2 Lemaitre B, Nicolas E, Michaut L, Reichhart J M, Hoffmann J A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults.  Cell. 1996;  86 973-983
  • 3 Poltorak A, He X, Smirnova I et al.. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.  Science. 1998;  282 2085-2088
  • 4 O'Neill L A. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress.  Immunol Rev. 2008;  226 10-18
  • 5 Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling.  Ann N Y Acad Sci. 2008;  1143 1-20
  • 6 Gay N J, Keith F J. Drosophila Toll and IL-1 receptor.  Nature. 1991;  351 355-356
  • 7 Freudenberg M A, Tchaptchet S, Keck S et al.. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity.  Immunobiology. 2008;  213 193-203
  • 8 Kim H M, Park B S, Kim J I et al.. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran.  Cell. 2007;  130 906-917
  • 9 Akira S, Takeda K. Toll-like receptor signalling.  Nat Rev Immunol. 2004;  4 499-511
  • 10 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity.  Cell. 2006;  124 783-801
  • 11 Horng T, Barton G M, Flavell R A, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors.  Nature. 2002;  420 329-333
  • 12 Yamamoto M, Sato S, Hemmi H et al.. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4.  Nature. 2002;  420 324-329
  • 13 Yamamoto M, Sato S, Hemmi H et al.. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway.  Nat Immunol. 2003;  4 1144-1150
  • 14 Pfeiffer R. Untersuchungen ušber das Choleragift.  Z Hygiene. 1892;  11 393-412
  • 15 Alexander C, Rietschel E T. Bacterial lipopolysaccharides and innate immunity.  J Endotoxin Res. 2001;  7 167-202
  • 16 Jiang Z, Georgel P, Du X et al.. CD14 is required for MyD88-independent LPS signaling.  Nat Immunol. 2005;  6 565-570
  • 17 Huber M, Kalis C, Keck S et al.. R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells.  Eur J Immunol. 2006;  36 701-711
  • 18 Beutler B. Neo-ligands for innate immune receptors and the etiology of sterile inflammatory disease.  Immunol Rev. 2007;  220 113-128
  • 19 Lotze M T, Zeh H J, Rubartelli A et al.. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity.  Immunol Rev. 2007;  220 60-81
  • 20 Kono H, Rock K L. How dying cells alert the immune system to danger.  Nat Rev Immunol. 2008;  8 279-289
  • 21 Lee J Y, Zhao L, Youn H S et al.. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1.  J Biol Chem. 2004;  279 16971-16979
  • 22 Shi H, Kokoeva M V, Inouye K, Tzameli I, Yin H, Flier J S. TLR4 links innate immunity and fatty acid-induced insulin resistance.  J Clin Invest. 2006;  116 3015-3025
  • 23 Tsan M F, Baochong Gao. Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors.  J Endotoxin Res. 2007;  13 6-14
  • 24 Tsung A, Sahai R, Tanaka H et al.. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion.  J Exp Med. 2005;  201 1135-1143
  • 25 Seki E, De Minicis S, Osterreicher C H et al.. TLR4 enhances TGF-beta signaling and hepatic fibrosis.  Nat Med. 2007;  13 1324-1332
  • 26 Bianchi M E, Manfredi A A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity.  Immunol Rev. 2007;  220 35-46
  • 27 Lotze M T, Tracey K J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.  Nat Rev Immunol. 2005;  5 331-342
  • 28 Bonaldi T, Talamo F, Scaffidi P et al.. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.  EMBO J. 2003;  22 5551-5560
  • 29 Scaffidi P, Misteli T, Bianchi M E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation.  Nature. 2002;  418 191-195
  • 30 Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin).  J Leukoc Biol. 2007;  81 49-58
  • 31 Sha Y, Zmijewski J, Xu Z, Abraham E. HMGB1 develops enhanced proinflammatory activity by binding to cytokines.  J Immunol. 2008;  180 2531-2537
  • 32 Tian J, Avalos A M, Mao S Y et al.. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE.  Nat Immunol. 2007;  8 487-496
  • 33 Youn J H, Oh Y J, Kim E S, Choi J E, Shin J S. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes.  J Immunol. 2008;  180 5067-5074
  • 34 Jiang D, Liang J, Noble P W. Hyaluronan in tissue injury and repair.  Annu Rev Cell Dev Biol. 2007;  23 435-461
  • 35 Jiang D, Liang J, Fan J et al.. Regulation of lung injury and repair by Toll-like receptors and hyaluronan.  Nat Med. 2005;  11 1173-1179
  • 36 Taylor K R, Trowbridge J M, Rudisill J A, Termeer C C, Simon J C, Gallo R L. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4.  J Biol Chem. 2004;  279 17079-17084
  • 37 Termeer C, Benedix F, Sleeman J et al.. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4.  J Exp Med. 2002;  195 99-111
  • 38 Nanji A A, Khettry U, Sadrzadeh S M. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease).  Proc Soc Exp Biol Med. 1994;  205 243-247
  • 39 Adachi Y, Moore L E, Bradford B U, Gao W, Thurman R G. Antibiotics prevent liver injury in rats following long-term exposure to ethanol.  Gastroenterology. 1995;  108 218-224
  • 40 Adachi Y, Bradford B U, Gao W, Bojes H K, Thurman R G. Inactivation of Kupffer cells prevents early alcohol-induced liver injury.  Hepatology. 1994;  20 453-460
  • 41 Li Z, Yang S, Lin H et al.. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease.  Hepatology. 2003;  37 343-350
  • 42 Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff S C, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice.  Hepatology. 2009;  50 1094-1104
  • 43 Rivera C A, Bradford B U, Hunt K J et al.. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G200-G207
  • 44 Duffield J S, Forbes S J, Constandinou C M et al.. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.  J Clin Invest. 2005;  115 56-65
  • 45 Su G L, Klein R D, Aminlari A et al.. Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and toll-like receptor 4.  Hepatology. 2000;  31 932-936
  • 46 Seki E, Tsutsui H, Nakano H et al.. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta.  J Immunol. 2001;  166 2651-2657
  • 47 Kopydlowski K M, Salkowski C A, Cody M J et al.. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo.  J Immunol. 1999;  163 1537-1544
  • 48 Lichtman S N, Wang J, Lemasters J J. LPS receptor CD14 participates in release of TNF-alpha in RAW 264.7 and peritoneal cells but not in Kupffer cells.  Am J Physiol. 1998;  275(1 Pt 1) G39-G46
  • 49 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde K H, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge.  J Hepatol. 1995;  22 226-229
  • 50 Schuchmann M, Hermann F, Herkel J, van der Zee R, Galle P R, Lohse A W. HSP60 and CpG-DNA-oligonucleotides differentially regulate LPS-tolerance of hepatic Kupffer cells.  Immunol Lett. 2004;  93 199-204
  • 51 Van Bossuyt H, De Zanger R B, Wisse E. Cellular and subcellular distribution of injected lipopolysaccharide in rat liver and its inactivation by bile salts.  J Hepatol. 1988;  7 325-337
  • 52 Fox E S, Thomas P, Broitman S A. Clearance of gut-derived endotoxins by the liver. Release and modification of 3H, 14C-lipopolysaccharide by isolated rat Kupffer cells.  Gastroenterology. 1989;  96(2 Pt 1) 456-461
  • 53 Mimura Y, Sakisaka S, Harada M, Sata M, Tanikawa K. Role of hepatocytes in direct clearance of lipopolysaccharide in rats.  Gastroenterology. 1995;  109 1969-1976
  • 54 Shao B, Lu M, Katz S C et al.. A host lipase detoxifies bacterial lipopolysaccharides in the liver and spleen.  J Biol Chem. 2007;  282 13726-13735
  • 55 Matsumura T, Degawa T, Takii T et al.. TRAF6-NF-kappaB pathway is essential for interleukin-1-induced TLR2 expression and its functional response to TLR2 ligand in murine hepatocytes.  Immunology. 2003;  109 127-136
  • 56 Matsumura T, Ito A, Takii T, Hayashi H, Onozaki K. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes.  J Interferon Cytokine Res. 2000;  20 915-921
  • 57 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  88 125-172
  • 58 Paik Y H, Schwabe R F, Bataller R, Russo M P, Jobin C, Brenner D A. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.  Hepatology. 2003;  37 1043-1055
  • 59 Kao Y H, Jawan B, Goto S et al.. High-mobility group box 1 protein activates hepatic stellate cells in vitro.  Transplant Proc. 2008;  40 2704-2705
  • 60 Connolly M K, Bedrosian A S, Mallen-St Clair J et al.. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha.  J Clin Invest. 2009;  119 3213-3225
  • 61 Chen X M, O'Hara S P, Nelson J B et al.. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB.  J Immunol. 2005;  175 7447-7456
  • 62 Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis.  Hepatology. 2005;  41 422-433
  • 63 Wells C L, Maddaus M A, Reynolds C M, Jechorek R P, Simmons R L. Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria.  Infect Immun. 1987;  55 2689-2694
  • 64 Fukui H, Brauner B, Bode J C, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay.  J Hepatol. 1991;  12 162-169
  • 65 Parlesak A, Schäfer C, Schütz T, Bode J C, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease.  J Hepatol. 2000;  32 742-747
  • 66 Mathurin P, Deng Q G, Keshavarzian A, Choudhary S, Holmes E W, Tsukamoto H. Exacerbation of alcoholic liver injury by enteral endotoxin in rats.  Hepatology. 2000;  32 1008-1017
  • 67 Lin R S, Lee F Y, Lee S D et al.. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation.  J Hepatol. 1995;  22 165-172
  • 68 Rivera C A, Bradford B U, Seabra V, Thurman R G. Role of endotoxin in the hypermetabolic state after acute ethanol exposure.  Am J Physiol. 1998;  275(6 Pt 1) G1252-G1258
  • 69 Steffen E K, Berg R D, Deitch E A. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node.  J Infect Dis. 1988;  157 1032-1038
  • 70 Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis.  Semin Liver Dis. 2008;  28 26-42
  • 71 Plebani M, Burlina A. Biochemical markers of hepatic fibrosis.  Clin Biochem. 1991;  24 219-239
  • 72 Bataller R, Brenner D A. Liver fibrosis.  J Clin Invest. 2005;  115 209-218
  • 73 Nolan J P, Leibowitz A I. Endotoxin and the liver. III. Modification of acute carbon tetrachloride injury by polymyxin b—an antiendotoxin.  Gastroenterology. 1978;  75 445-449
  • 74 Grinko I, Geerts A, Wisse E. Experimental biliary fibrosis correlates with increased numbers of fat-storing and Kupffer cells, and portal endotoxemia.  J Hepatol. 1995;  23 449-458
  • 75 Chan C C, Hwang S J, Lee F Y et al.. Prognostic value of plasma endotoxin levels in patients with cirrhosis.  Scand J Gastroenterol. 1997;  32 942-946
  • 76 Luckey T D, Reyniers J A, Gyorgy P, Forbes M. Germfree animals and liver necrosis.  Ann N Y Acad Sci. 1954;  57 932-935
  • 77 Rutenburg A M, Sonnenblick E, Koven I, Aprahamian H A, Reiner L, Fine J. The role of intestinal bacteria in the development of dietary cirrhosis in rats.  J Exp Med. 1957;  106 1-14
  • 78 Isayama F, Hines I N, Kremer M et al.. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G1318-G1328
  • 79 Poelstra K, Popov Y, Sverdlov D Y, Sharma A, Schuppan D. Gut-derived bacterial products drive progression of liver fibrosis in mdr2 − / − mice: Involvement of LPS and TLR4.  Hepatology. 2009;  50 819A
  • 80 Watanabe A, Hashmi A, Gomes D A et al.. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9.  Hepatology. 2007;  46 1509-1518
  • 81 Gabele E, Muhlbauer M, Dorn C et al.. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis.  Biochem Biophys Res Commun. 2008;  376(2) 271-276
  • 82 Seki E, De Minicis S, Gwak G Y et al.. CCR1 and CCR5 promote hepatic fibrosis in mice.  J Clin Invest. 2009;  119 1858-1870
  • 83 Huang H, Shiffman M L, Friedman S et al.. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C.  Hepatology. 2007;  46 297-306
  • 84 Li Y, Chang M, Abar O et al.. Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection.  J Hepatol. 2009;  51 750-757
  • 85 Von Hahn T, Halangk J, Witt H et al.. Relevance of endotoxin receptor CD14 and TLR4 gene variants in chronic liver disease.  Scand J Gastroenterol. 2008;  43 584-592
  • 86 Guo J, Loke J, Zheng F et al.. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses.  Hepatology. 2009;  49 960-968
  • 87 Bjarnason I, Peters T J, Wise R J. The leaky gut of alcoholism: possible route of entry for toxic compounds.  Lancet. 1984;  1 179-182
  • 88 Draper L R, Gyure L A, Hall J G, Robertson D. Effect of alcohol on the integrity of the intestinal epithelium.  Gut. 1983;  24 399-404
  • 89 Uesugi T, Froh M, Arteel G E, Bradford B U, Thurman R G. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice.  Hepatology. 2001;  34 101-108
  • 90 Hansen J, Cherwitz D L, Allen J I. The role of tumor necrosis factor-alpha in acute endotoxin-induced hepatotoxicity in ethanol-fed rats.  Hepatology. 1994;  20 461-474
  • 91 Hritz I, Mandrekar P, Velayudham A et al.. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88.  Hepatology. 2008;  48(4) 1224-1231
  • 92 Kono H, Rusyn I, Yin M et al.. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease.  J Clin Invest. 2000;  106 867-872
  • 93 Yang S Q, Lin H Z, Lane M D, Clemens M, Diehl A M. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis.  Proc Natl Acad Sci U S A. 1997;  94 2557-2562
  • 94 Szabo G, Velayudham A, Romics Jr L, Mandrekar P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4.  Alcohol Clin Exp Res. 2005;  29(11 Suppl) 140S-145S
  • 95 Rivera C A, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis.  J Hepatol. 2007;  47 571-579
  • 96 Cani P D, Amar J, Iglesias M A et al.. Metabolic endotoxemia initiates obesity and insulin resistance.  Diabetes. 2007;  56 1761-1772
  • 97 Cani P D, Bibiloni R, Knauf C et al.. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.  Diabetes. 2008;  57 1470-1481
  • 98 Cope K, Risby T, Diehl A M. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis.  Gastroenterology. 2000;  119 1340-1347
  • 99 Nair S, Cope K, Risby T H, Diehl A M, Terence R H. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis.  Am J Gastroenterol. 2001;  96 1200-1204
  • 100 Adawi D, Kasravi F B, Molin G, Jeppsson B. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat.  Hepatology. 1997;  25 642-647
  • 101 Ewaschuk J, Endersby R, Thiel D et al.. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis.  Hepatology. 2007;  46 841-850
  • 102 Osman N, Adawi D, Ahrné S, Jeppsson B, Molin G. Endotoxin- and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry.  Dig Liver Dis. 2007;  39 849-856
  • 103 Liu Q, Duan Z P, Ha D K, Bengmark S, Kurtovic J, Riordan S M. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis.  Hepatology. 2004;  39 1441-1449
  • 104 Rayes N, Seehofer D, Hansen S et al.. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients.  Transplantation. 2002;  74 123-127
  • 105 Rayes N, Seehofer D, Theruvath T et al.. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation—a randomized, double-blind trial.  Am J Transplant. 2005;  5 125-130
  • 106 Loguercio C, Federico A, Tuccillo C et al.. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases.  J Clin Gastroenterol. 2005;  39 540-543
  • 107 Velayudham A, Dolganiuc A, Ellis M et al.. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice.  Hepatology. 2009;  49 989-997
  • 108 Runyon B A, Borzio M, Young S, Squier S U, Guarner C, Runyon M A. Effect of selective bowel decontamination with norfloxacin on spontaneous bacterial peritonitis, translocation, and survival in an animal model of cirrhosis.  Hepatology. 1995;  21 1719-1724
  • 109 Llovet J M, Bartolí R, Planas R et al.. Selective intestinal decontamination with norfloxacin reduces bacterial translocation in ascitic cirrhotic rats exposed to hemorrhagic shock.  Hepatology. 1996;  23 781-787
  • 110 Bauer T M, Fernández J, Navasa M, Vila J, Rodés J. Failure of Lactobacillus spp. to prevent bacterial translocation in a rat model of experimental cirrhosis.  J Hepatol. 2002;  36 501-506
  • 111 Fernández J, Navasa M, Planas R et al.. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis.  Gastroenterology. 2007;  133 818-824
  • 112 Runyon B A. A pill a day can improve survival in patients with advanced cirrhosis.  Gastroenterology. 2007;  133 1029-1031
  • 113 Mullarkey M, Rose J R, Bristol J et al.. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist.  J Pharmacol Exp Ther. 2003;  304 1093-1102
  • 114 Rossignol D P, Lynn M. Antagonism of in vivo and ex vivo response to endotoxin by E5564, a synthetic lipid A analogue.  J Endotoxin Res. 2002;  8 483-488
  • 115 Fort M M, Mozaffarian A, Stöver A G et al.. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease.  J Immunol. 2005;  174 6416-6423
  • 116 Ii M, Matsunaga N, Hazeki K et al.. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.  Mol Pharmacol. 2006;  69 1288-1295
  • 117 Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain.  Eur J Pharmacol. 2008;  584 40-48
  • 118 Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model.  Eur J Pharmacol. 2007;  571 231-239
  • 119 Schnabl B, Brandl K, Fink M et al.. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells.  Biochem Biophys Res Commun. 2008;  375 210-214
  • 120 Kanzler H, Barrat F J, Hessel E M, Coffman R L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists.  Nat Med. 2007;  13 552-559

Robert F SchwabeM.D. 

Russ Berrie Pavilion, Room 415, 1150 Street, Nicholas Avenue

New York, NY 10032

Email: rfs2102@columbia.edu

    >