Semin Liver Dis 2015; 35(02): 132-145
DOI: 10.1055/s-0035-1550065
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Fibrosis in Nonalcoholic Fatty Liver Disease: Mechanisms and Clinical Implications

Paul Angulo
1   Division of Digestive Disease and Nutrition, University of Kentucky Medical Center, Lexington, Kentucky
,
Mariana Verdelho Machado
2   Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
3   Department of Gastroenterology, Hospital de Santa Maria, CHLN, Lisbon, Portugal
,
Anna Mae Diehl
2   Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2015 (online)

Abstract

Nonalcoholic fatty liver disease (NAFLD) is tightly associated with obesity and the metabolic syndrome in the United States and other Western countries. It is also the liver disease most rapidly increasing in prevalence in the United States, and has become a major indication for liver transplantation worldwide. Compelling evidence shows that the degree of liver fibrosis dictates liver prognosis in NAFLD. This review focuses on fibrosis based on clinical and basic perspectives. The authors summarize the physiopathology of fibrosis development and progression in NAFLD, highlighting its molecular mechanisms, clinical consequences of fibrosis, the diagnostic approach and management strategies.

 
  • References

  • 1 Corey KE, Kaplan LM. Obesity and liver disease: the epidemic of the twenty-first century. Clin Liver Dis 2014; 18 (1) 1-18
  • 2 Pagadala MR, McCullough AJ. Non-alcoholic fatty liver disease and obesity: not all about body mass index. Am J Gastroenterol 2012; 107 (12) 1859-1861
  • 3 Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011; 141 (4) 1249-1253
  • 4 Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 2003; 98 (5) 960-967
  • 5 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34 (3) 274-285
  • 6 Adams LA, Lymp JF, St Sauver J , et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129 (1) 113-121
  • 7 Ekstedt M, Hagström H, Nasr P , et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2014; ; Epub ahead of print
  • 8 Angulo P, Bugianesi E, Bjornsson ES , et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (4) 782-9.e4
  • 9 Ekstedt M, Franzén LE, Mathiesen UL , et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44 (4) 865-873
  • 10 Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 2013; 10 (6) 330-344
  • 11 Wong VW, Wong GL, Choi PC , et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59 (7) 969-974
  • 12 Porepa L, Ray JG, Sanchez-Romeu P, Booth GL. Newly diagnosed diabetes mellitus as a risk factor for serious liver disease. CMAJ 2010; 182 (11) E526-E531
  • 13 Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care 2012; 35 (9) 1835-1844
  • 14 Machado MV, Cortez-Pinto H. Management of fatty liver disease with the metabolic syndrome. Expert Rev Gastroenterol Hepatol 2014; 8 (5) 487-500
  • 15 Romeo S, Kozlitina J, Xing C , et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 16 Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ ; NASH CRN. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010; 52 (3) 894-903
  • 17 Petit JM, Guiu B, Masson D , et al. PNPLA3 polymorphism influences liver fibrosis in unselected patients with type 2 diabetes. Liver Int 2011; 31 (9) 1332-1336
  • 18 Zhang L, You W, Zhang H , et al. PNPLA3 Polymorphisms (rs738409) and non-alcoholic fatty liver disease risk and related phenotypes: a meta-analysis. J Gastroenterol Hepatol 2015; ; Epub ahead of print
  • 19 Angulo P, Kleiner DE, Dam-Larsen S , et al. Long-term prognosis relevance of liver histology in nonalcoholic fatty liver disease: The PREHIN study. Gastroenterology 2015; ; In press
  • 20 Itagaki H, Shimizu K, Morikawa S, Ogawa K, Ezaki T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol 2013; 6 (12) 2683-2696
  • 21 Mells JE, Fu PP, Sharma S , et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol 2012; 302 (2) G225-G235
  • 22 Dorn C, Engelmann JC, Saugspier M , et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest 2014; 94 (4) 394-408
  • 23 Matsumoto M, Hada N, Sakamaki Y , et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol 2013; 94 (2) 93-103
  • 24 Wolf MJ, Adili A, Piotrowitz K , et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 2014; 26 (4) 549-564
  • 25 Yang L, Roh YS, Song J , et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 2014; 59 (2) 483-495
  • 26 Lindström P. The physiology of obese-hyperglycemic mice [ob/ob mice]. [ob/ob mice] ScientificWorldJournal 2007; 7: 666-685
  • 27 Diehl AM. Lessons from animal models of NASH. Hepatol Res 2005; 33 (2) 138-144
  • 28 Stiles B, Wang Y, Stahl A , et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. [corrected] Proc Natl Acad Sci U S A 2004; 101 (7) 2082-2087
  • 29 Horie Y, Suzuki A, Kataoka E , et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113 (12) 1774-1783
  • 30 Cook WS, Jain S, Jia Y , et al. Peroxisome proliferator-activated receptor alpha-responsive genes induced in the newborn but not prenatal liver of peroxisomal fatty acyl-CoA oxidase null mice. Exp Cell Res 2001; 268 (1) 70-76
  • 31 Huang J, Viswakarma N, Yu S , et al. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. Am J Pathol 2011; 179 (2) 703-713
  • 32 Machado MV, Diehl AM. Animal models of NAFLD. In: Chalasani N, Szabo G, , eds. Alcoholic and Nonalcoholic Fatty Liver Disease. New York, NY: Springer; 2015
  • 33 Friedman SL. Liver fibrosis in 2012: Convergent pathways that cause hepatic fibrosis in NASH. Nature reviews. Gastroenterol Hepatol 2013; 10: 71-72
  • 34 Covas DT, Panepucci RA, Fontes AM , et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008; 36 (5) 642-654
  • 35 Castilho-Fernandes A, de Almeida DC, Fontes AM , et al. Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. Exp Mol Pathol 2011; 91 (3) 664-672
  • 36 Hellerbrand C. Hepatic stellate cells—the pericytes in the liver. Pflugers Arch 2013; 465 (6) 775-778
  • 37 Kramann R, Schneider RK, DiRocco DP , et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16 (1) 51-66
  • 38 Spitzer TL, Rojas A, Zelenko Z , et al. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod 2012; 86 (2) 58
  • 39 Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231 (3) 273-289
  • 40 Zeybel M, Hardy T, Wong YK , et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 2012; 18 (9) 1369-1377
  • 41 Sicklick JK, Li YX, Choi SS , et al. Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab Invest 2005; 85 (11) 1368-1380
  • 42 Yang L, Wang Y, Mao H , et al. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 2008; 48 (1) 98-106
  • 43 Choi SS, Syn WK, Karaca GF , et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the Hedgehog pathway. J Biol Chem 2010; 285 (47) 36551-36560
  • 44 Beachy PA, Hymowitz SG, Lazarus RA, Leahy DJ, Siebold C. Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev 2010; 24 (18) 2001-2012
  • 45 Perrot CY, Javelaud D, Mauviel A. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther 2013; 137 (2) 183-199
  • 46 Wu SM, Choo AB, Yap MG, Chan KK. Role of Sonic Hedgehog signaling and the expression of its components in human embryonic stem cells. Stem Cell Res (Amst) 2010; 4 (1) 38-49
  • 47 Horn A, Kireva T, Palumbo-Zerr K , et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann Rheum Dis 2012; 71 (5) 785-789
  • 48 Horn A, Palumbo K, Cordazzo C , et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum 2012; 64 (8) 2724-2733
  • 49 Cigna N, Farrokhi Moshai E, Brayer S , et al. The Hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol 2012; 181 (6) 2126-2137
  • 50 Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta 2013; 1832 (7) 911-921
  • 51 Moshai EF, Wémeau-Stervinou L, Cigna N , et al. Targeting the Hedgehog-glioma-associated oncogene homolog pathway inhibits bleomycin-induced lung fibrosis in mice. Am J Respir Cell Mol Biol 2014; 51 (1) 11-25
  • 52 Jung IH, Jung DE, Park YN, Song SY, Park SW. Aberrant Hedgehog ligands induce progressive pancreatic fibrosis by paracrine activation of myofibroblasts and ductular cells in transgenic zebrafish. PLoS ONE 2011; 6 (12) e27941
  • 53 Tsang SW, Zhang H, Lin C , et al. Rhein, a natural anthraquinone derivative, attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis. PLoS ONE 2013; 8 (12) e82201
  • 54 Bai Y, Lu H, Wu C , et al. Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the Hedgehog signaling pathway. Biochem Pharmacol 2014; 92 (3) 484-493
  • 55 Zhou D, Li Y, Zhou L , et al. Sonic Hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 2014; 25 (10) 2187-2200
  • 56 Ding H, Zhou D, Hao S , et al. Sonic Hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 2012; 23 (5) 801-813
  • 57 Pratap A, Singh S, Mundra V , et al. Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. J Drug Target 2012; 20 (9) 770-782
  • 58 Michelotti GA, Xie G, Swiderska M , et al. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013; 123 (6) 2380-2394
  • 59 Philips GM, Chan IS, Swiderska M , et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS ONE 2011; 6 (9) e23943
  • 60 Hirsova P, Ibrahim SH, Bronk SF, Yagita H, Gores GJ. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PLoS ONE 2013; 8 (7) e70599
  • 61 Xie G, Karaca G, Swiderska-Syn M , et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 2013; 58 (5) 1801-1813
  • 62 Tsukamoto H, Zhu NL, Wang J, Asahina K, Machida K. Morphogens and hepatic stellate cell fate regulation in chronic liver disease. J Gastroenterol Hepatol 2012; 27 (Suppl. 02) 94-98
  • 63 Li C, Li M, Li S , et al. Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells 2015; 33 (3) 999-1012
  • 64 Choi SS, Omenetti A, Syn WK, Diehl AM. The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol 2011; 43 (2) 238-244
  • 65 Rangwala F, Guy CD, Lu J , et al. Increased production of Sonic Hedgehog by ballooned hepatocytes. J Pathol 2011; 224 (3) 401-410
  • 66 Guy CD, Suzuki A, Zdanowicz M , et al; NASH CRN. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 2012; 55 (6) 1711-1721
  • 67 Jung Y, Brown KD, Witek RP , et al. Accumulation of Hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 2008; 134 (5) 1532-1543
  • 68 Jung Y, Witek RP, Syn WK , et al. Signals from dying hepatocytes trigger growth of liver progenitors. Gut 2010; 59 (5) 655-665
  • 69 Machado MV, Michelotti GA, Pereira TD , et al. Reduced lipoapoptosis, Hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 2014; ; Epub ahead of print
  • 70 Guy CD, Suzuki A, Abdelmalek MF, Burchette JL, Diehl AM ; NASH CRN. Treatment response in the PIVENS trial is associated with decreased Hedgehog pathway activity. Hepatology 2015; 61 (1) 98-107
  • 71 Omenetti A, Diehl AM. Hedgehog signaling in cholangiocytes. Curr Opin Gastroenterol 2011; 27 (3) 268-275
  • 72 Omenetti A, Syn WK, Jung Y , et al. Repair-related activation of Hedgehog signaling promotes cholangiocyte chemokine production. Hepatology 2009; 50 (2) 518-527
  • 73 Syn WK, Agboola KM, Swiderska M , et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61 (9) 1323-1329
  • 74 Syn WK, Oo YH, Pereira TA , et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51 (6) 1998-2007
  • 75 Syn WK, Witek RP, Curbishley SM , et al. Role for Hedgehog pathway in regulating growth and function of invariant NKT cells. Eur J Immunol 2009; 39 (7) 1879-1892
  • 76 Richardson MM, Jonsson JR, Powell EE , et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133 (1) 80-90
  • 77 Roskams T, Yang SQ, Koteish A , et al. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am J Pathol 2003; 163 (4) 1301-1311
  • 78 Sicklick JK, Li YX, Melhem A , et al. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 2006; 290 (5) G859-G870
  • 79 Xie G, Choi SS, Syn WK , et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 2013; 62 (2) 299-309
  • 80 Vokes SA, Yatskievych TA, Heimark RL , et al. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development 2004; 131 (17) 4371-4380
  • 81 Kelly MA, Hirschi KK. Signaling hierarchy regulating human endothelial cell development. Arterioscler Thromb Vasc Biol 2009; 29 (5) 718-724
  • 82 Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res 2009; 104 (5) 576-588
  • 83 Patel-Hett S, D'Amore PA. Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol 2011; 55 (4-5) 353-363
  • 84 Francis H, Bohanan J, Alpini G. Hedgehog signalling and LSEC capillarisation: stopping this one in its tracks. Gut 2012; 61 (9) 1243-1244
  • 85 Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999; 30 (6) 1356-1362
  • 86 Kruger FC, Daniels CR, Kidd M , et al. APRI: a simple bedside marker for advanced fibrosis that can avoid liver biopsy in patients with NAFLD/NASH. S Afr Med J 2011; 101 (7) 477-480
  • 87 Angulo P, Hui JM, Marchesini G , et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45 (4) 846-854
  • 88 Dixon JB, Bhathal PS, O'Brien PE. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 2001; 121 (1) 91-100
  • 89 Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008; 57 (10) 1441-1447
  • 90 Ratziu V, Giral P, Charlotte F , et al. Liver fibrosis in overweight patients. Gastroenterology 2000; 118 (6) 1117-1123
  • 91 Adams LA, George J, Bugianesi E , et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2011; 26 (10) 1536-1543
  • 92 Calès P, Lainé F, Boursier J , et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol 2009; 50 (1) 165-173
  • 93 Adams LA, Bulsara M, Rossi E , et al. Hepascore: an accurate validated predictor of liver fibrosis in chronic hepatitis C infection. Clin Chem 2005; 51 (10) 1867-1873
  • 94 Qureshi K, Clements RH, Abrams GA. The utility of the “NAFLD fibrosis score” in morbidly obese subjects with NAFLD. Obes Surg 2008; 18 (3) 264-270
  • 95 Wong VW, Wong GL, Chim AM , et al. Validation of the NAFLD fibrosis score in a Chinese population with low prevalence of advanced fibrosis. Am J Gastroenterol 2008; 103 (7) 1682-1688
  • 96 Guha IN, Parkes J, Roderick P , et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008; 47 (2) 455-460
  • 97 Kaneda H, Hashimoto E, Yatsuji S, Tokushige K, Shiratori K. Hyaluronic acid levels can predict severe fibrosis and platelet counts can predict cirrhosis in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2006; 21 (9) 1459-1465
  • 98 Nobili V, Parkes J, Bottazzo G , et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology 2009; 136 (1) 160-167
  • 99 Ratziu V, Massard J, Charlotte F , et al; LIDO Study Group; CYTOL study group. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2006; 6: 6
  • 100 Sakugawa H, Nakayoshi T, Kobashigawa K , et al. Clinical usefulness of biochemical markers of liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol 2005; 11 (2) 255-259
  • 101 Santos VN, Leite-Mór MM, Kondo M , et al. Serum laminin, type IV collagen and hyaluronan as fibrosis markers in non-alcoholic fatty liver disease. Braz J Med Biol Res 2005; 38 (5) 747-753
  • 102 Suzuki A, Angulo P, Lymp J, Li D, Satomura S, Lindor K. Hyaluronic acid, an accurate serum marker for severe hepatic fibrosis in patients with non-alcoholic fatty liver disease. Liver Int 2005; 25 (4) 779-786
  • 103 Johansen JS, Christoffersen P, Møller S , et al. Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol 2000; 32 (6) 911-920
  • 104 Sandrin L, Fourquet B, Hasquenoph JM , et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29 (12) 1705-1713
  • 105 Roulot D, Czernichow S, Le Clésiau H, Costes JL, Vergnaud AC, Beaugrand M. Liver stiffness values in apparently healthy subjects: influence of gender and metabolic syndrome. J Hepatol 2008; 48 (4) 606-613
  • 106 Yoneda M, Yoneda M, Mawatari H , et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig Liver Dis 2008; 40 (5) 371-378
  • 107 Nobili V, Vizzutti F, Arena U , et al. Accuracy and reproducibility of transient elastography for the diagnosis of fibrosis in pediatric nonalcoholic steatohepatitis. Hepatology 2008; 48 (2) 442-448
  • 108 Wong VW, Vergniol J, Wong GL , et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010; 51 (2) 454-462
  • 109 Lupsor M, Badea R, Stefanescu H , et al. Performance of unidimensional transient elastography in staging non-alcoholic steatohepatitis. J Gastrointestin Liver Dis 2010; 19 (1) 53-60
  • 110 Petta S, Di Marco V, Cammà C, Butera G, Cabibi D, Craxì A. Reliability of liver stiffness measurement in non-alcoholic fatty liver disease: the effects of body mass index. Aliment Pharmacol Ther 2011; 33 (12) 1350-1360
  • 111 Gaia S, Carenzi S, Barilli AL , et al. Reliability of transient elastography for the detection of fibrosis in non-alcoholic fatty liver disease and chronic viral hepatitis. J Hepatol 2011; 54 (1) 64-71
  • 112 Myers RP, Pomier-Layrargues G, Kirsch R , et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology 2012; 55 (1) 199-208
  • 113 Wong VW, Vergniol J, Wong GL , et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2012; 107 (12) 1862-1871
  • 114 Coco B, Oliveri F, Maina AM , et al. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat 2007; 14 (5) 360-369
  • 115 Sagir A, Erhardt A, Schmitt M, Häussinger D. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology 2008; 47 (2) 592-595
  • 116 Arena U, Vizzutti F, Corti G , et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2008; 47 (2) 380-384
  • 117 Millonig G, Reimann FM, Friedrich S , et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology 2008; 48 (5) 1718-1723
  • 118 Mederacke I, Wursthorn K, Kirschner J , et al. Food intake increases liver stiffness in patients with chronic or resolved hepatitis C virus infection. Liver Int 2009; 29 (10) 1500-1506
  • 119 Arena U, Lupsor Platon M, Stasi C , et al. Liver stiffness is influenced by a standardized meal in patients with chronic hepatitis C virus at different stages of fibrotic evolution. Hepatology 2013; 58 (1) 65-72
  • 120 Berzigotti A, De Gottardi A, Vukotic R , et al. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS ONE 2013; 8 (3) e58742
  • 121 Castéra L, Foucher J, Bernard PH , et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2010; 51 (3) 828-835
  • 122 Berzigotti A, Castera L. Update on ultrasound imaging of liver fibrosis. J Hepatol 2013; 59 (1) 180-182
  • 123 Nightingale K, Nightingale R, Stutz D, Trahey G. Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load. Ultrason Imaging 2002; 24 (2) 100-108
  • 124 Palmeri ML, Wang MH, Rouze NC , et al. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 2011; 55 (3) 666-672
  • 125 Yoneda M, Suzuki K, Kato S , et al. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 2010; 256 (2) 640-647
  • 126 Ochi H, Hirooka M, Koizumi Y , et al. Real-time tissue elastography for evaluation of hepatic fibrosis and portal hypertension in nonalcoholic fatty liver diseases. Hepatology 2012; 56 (4) 1271-1278
  • 127 Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269 (5232) 1854-1857
  • 128 Talwalkar JA, Yin M, Fidler JL, Sanderson SO, Kamath PS, Ehman RL. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 2008; 47 (1) 332-342
  • 129 Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL. Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 2013; 268 (2) 411-419
  • 130 Huwart L, Sempoux C, Vicaut E , et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135 (1) 32-40
  • 131 Sanyal AJ, Chalasani N, Kowdley KV , et al; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362 (18) 1675-1685
  • 132 Neuschwander-Tetri BA, Loomba R, Sanyal AJ , et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet Lancet 2015; 385 (9972) 956-965
  • 133 Promrat K, Kleiner DE, Niemeier HM , et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010; 51 (1) 121-129
  • 134 Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 2012; 55 (4) 885-904
  • 135 Mummadi RR, Kasturi KS, Chennareddygari S, Sood GK. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2008; 6 (12) 1396-1402
  • 136 Mathurin P, Hollebecque A, Arnalsteen L , et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology 2009; 137 (2) 532-540
  • 137 Chavez-Tapia NC, Tellez-Avila FI, Barrientos-Gutierrez T, Mendez-Sanchez N, Lizardi-Cervera J, Uribe M. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev 2010; CD007340 (1) CD007340
  • 138 Fiorucci S, Antonelli E, Rizzo G , et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004; 127 (5) 1497-1512
  • 139 Haukeland JW, Konopski Z, Eggesbø HB , et al. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol 2009; 44 (7) 853-860
  • 140 Belfort R, Harrison SA, Brown K , et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006; 355 (22) 2297-2307
  • 141 Aithal GP, Thomas JA, Kaye PV , et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 2008; 135 (4) 1176-1184
  • 142 Chalasani N, Younossi Z, Lavine JE , et al; American Association for the Study of Liver Diseases; American College of Gastroenterology; American Gastroenterological Association. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am J Gastroenterol 2012; 107 (6) 811-826
  • 143 Syn WK, Jung Y, Omenetti A , et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 2009; 137 (4) 1478-1488.e8
  • 144 Walter R, Wanninger J, Bauer S , et al. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp Mol Pathol 2011; 91 (3) 740-744
  • 145 Mahmoud AA, Bakir AS, Shabana SS. Serum TGF-β, Serum MMP-1, and HOMA-IR as non-invasive predictors of fibrosis in Egyptian patients with NAFLD. Saudi J Gastroenterol 2012; 18 (5) 327-333
  • 146 Tarantino G, Conca P, Riccio A , et al. Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign?. J Transl Med 2008; 6: 72
  • 147 Sepúlveda-Flores RN, Vera-Cabrera L, Flores-Gutiérrez JP , et al. Obesity-related non-alcoholic steatohepatitis and TGF-beta1 serum levels in relation to morbid obesity. Ann Hepatol 2002; 1 (1) 36-39
  • 148 Lee SJ, Kang JH, Choi SY, Suk KT, Kim DJ, Kwon OS. PKCδ as a regulator for TGFβ1-induced α-SMA production in a murine nonalcoholic steatohepatitis model. PLoS ONE 2013; 8 (2) e55979
  • 149 Moylan CA, Pang H, Dellinger A , et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology 2014; 59 (2) 471-482
  • 150 Colak Y, Senates E, Coskunpinar E , et al. Concentrations of connective tissue growth factor in patients with nonalcoholic fatty liver disease: association with liver fibrosis. Dis Markers 2012; 33 (2) 77-83
  • 151 Shimamura T, Fujisawa T, Husain SR, Kioi M, Nakajima A, Puri RK. Novel role of IL-13 in fibrosis induced by nonalcoholic steatohepatitis and its amelioration by IL-13R-directed cytotoxin in a rat model. J Immunol 2008; 181 (7) 4656-4665
  • 152 Yao J, Zhou CS, Ma X , et al. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol 2014; 20 (39) 14430-14441
  • 153 McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010; 59 (9) 1265-1269