1887

Abstract

The bacteria LMD 72.65 (ATCC 8724), P1 LMD 81.60 (NCIB 11625), LMD 80.62 (ATCC 25364), W LMD 50.28 (ATCC 9637), K12 LMD 93.68, PAO1 LMD 89.1 (ATCC 17933) and LMD 68.20 (ATCC 12633) utilized primary amines as a carbon and energy source, although the range of amines accepted varied from organism to organism. The Gram-negative bacteria and as well as the Gram-positive methylotroph P1 used an oxidase whereas the pseudomonads and the Gram-negative methylotroph used a dehydrogenase for amine oxidation. utilized several primary amines but showed a preference for those containing a phenyl group moiety. Only a single oxidase was used for oxidation of the amines. After purification, the following characteristics of the enzyme indicated that it belonged to the group of copper-quinoprotein amine oxidases (EC 1.4.3.6): the molecular mass (172000 Da) of the homodimeric protein; the UV/visible and EPR spectra of isolated and -nitrophenylhydrazine-inhibited enzyme; the presence and the content of copper and topaquinone (TPQ). The amine oxidase appeared to be soluble and localized in the periplasm, but catalase and NAD-dependent aromatic aldehyde dehydrogenase, enzymes catalysing the conversion of its reaction products, were found in the cytoplasm. From the amino acid sequence of the N-terminal part as well as that of a purified peptide, it appears that produces a copper-quinoprotein oxidase which is very similar to that found in other

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-505
1997-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-505.html?itemId=/content/journal/micro/10.1099/00221287-143-2-505&mimeType=html&fmt=ahah

References

  1. Azakami H., Yamashita M., Roh J.-H., Suzuki H., Kumagai H., Murooka Y. 1994; Nucleotide sequence of the gene for monoamine oxidase (maoA) from Escherichia coli. . J Ferm Bioeng 177:315–319
    [Google Scholar]
  2. Bradford M.M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  3. Bruinenberg P.G., Evers M., Waterman H.R., Kuipers J., Arnberg A.C., Ab G. 1989; Cloning and sequencing of the peroxisomal amine oxidase gene from Hansenula polymorpha. . Biochim Biophys Acta 1008:157–167
    [Google Scholar]
  4. Cooper R.A., Knowles P.F., Brown D.E., McGuirl M.A., Dooley D.M. 1992; Evidence for copper and 3,4,6-trihydroxy- phenylalanine quinone cofactor in an amine oxidase from Gramnegative bacterium Escherichia coli K-12.. Biochem J 288:337–340
    [Google Scholar]
  5. Cuskey S.M., Peccoraro V., Olsen R.H. 1987; Initial catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO: pathway description, mapping of mutations, and cloning of essential genes.. J Bacteriol 169:2398–2404
    [Google Scholar]
  6. Durham D.R., Perry J.J. 1978; Amine dehydrogenase of Pseudomonas putida: properties of the heme-prosthetic group.. J Bacteriol 135:981–986
    [Google Scholar]
  7. Eady R.R., Large P.J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AMI and its role in growth on methylamine.. Biochem J 106:245–255
    [Google Scholar]
  8. Felsenfeld G. 1960; The determination of cuprous ion in copper proteins.. Arch Biochem Biophys 87:247–251
    [Google Scholar]
  9. Frebort I., Pavel P., Luhova L., Toyama H., Matsushita K., Hirota S., Kitagawa T., Ueno T., Asano Y., Kato Y., Adachi O. 1996; Two amine oxidases from Aspergillus niger AKU 3302 contain topaquinone as the cofactor: unusual cofactor link to the glutamyl residue occurs only at one of the enzymes.. Biochim Biophys Acta 1295:59–72
    [Google Scholar]
  10. Govindaraj S., Eisenstein E., Jones L.H., Sanders-Loehr J., Chistoserdov A.Y., Davidson V.L., Edwards S. 1994; Aromatic amine dehydrogenase, a second tryptophan trypto- phylquinone enzyme.. J Bacteriol 176:2922–2929
    [Google Scholar]
  11. Haywood G.W., Large P.J. 1981; Microbial oxidation of amines. Distribution, purification and properties of two primary amine oxidases from the yeast Candida boidinii grown on amines as sole nitrogen source.. Biochem J 199:187–201
    [Google Scholar]
  12. van lersel J., Frank Jzn J., Duine J.A. 1985; Determination of absorption coefficients of purified proteins by conventional ultraviolet spectrophotometry and chromatography combined with multi wavelength detection.. Anal Biochem 151:196–204
    [Google Scholar]
  13. Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A.L., Klinman J.P. 1990; A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase.. Science 248:981–987
    [Google Scholar]
  14. Kitto G.B. 1969; Intra- and extra-mitochondrial malate dehydrogenases from chicken and tuna heart.. Methods Enzymol 13:106–116
    [Google Scholar]
  15. Knowles P.F., Dooley D.M. 1994; Amine oxidases.. In Metal Ions in Biological Systems 30 pp. 361–403 Seigel H. Edited by New York:: Marcel Dekker.;
    [Google Scholar]
  16. Kumagai H., Matsui H., Ogata K., Yamada H. 1969; Properties of crystalline tyramine oxidase from Sarcina lutea. . Biochim Biophys Acta 171:1–8
    [Google Scholar]
  17. Large P.J., Haywood G.W. 1990; Amine oxidases from methylotrophic yeasts.. Methods Enzymol 188:427–435
    [Google Scholar]
  18. Levering P.R., van Dijken J.P., Veenhuis M., Harder W. 1981; Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines.. Arch Microbiol 129:72–80
    [Google Scholar]
  19. Matsuzaki R., Fukui T., Sato H., Ozaki Y., Tanizawa K. 1994; Generation of the topaquinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autoxidation of a specific tyrosyl residue.. FEBS Lett 351:360–364
    [Google Scholar]
  20. Matsuzaki R., Suzuki S., Yamaguchi K., Fukui T., Tanizawa K. 1995; Spectroscopic studies on the mechanism of the topaquine generation in bacterial monoamine oxidase.. Biochemistry 34:4524–4530
    [Google Scholar]
  21. Mu D., Janes S.M., Smith A.J., Brown D.E., Dooley D.M., Klinman J.P. 1992; Tyrosine codon corresponds to topaquinone at the active site of copper amine oxidases.. J Biol Chem 267:7979–7982
    [Google Scholar]
  22. Mu D., Medzihradszky K.F., Adams G.W., Mayer P., Hines W.M., Burlingame A.L., Smith A.J., Cai D., Klinman J.P. 1994; Primary structures for a mammalian cellular and serum copper amine oxidase.. J Biol Chem 269:9926–9932
    [Google Scholar]
  23. Okamura O., Murooka Y., Harada T. 1976; Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. . J Bacteriol 127:24–31
    [Google Scholar]
  24. Parrot S., Jones S., Cooper R.A. 1987; 2-Phenylethylamine metabolism by Escherichia coli. . J Gen Microbiol 133:347–351
    [Google Scholar]
  25. Rassoulzadegan M., Binetruy B., Cuzin F. 1982; High frequency of gene transfer after fusion between bacteria and eukaryotic cells.. Nature 295:257–259
    [Google Scholar]
  26. Roh H.J., Suzuki H., Azakami H., Yamashita M., Murooka Y., Kumagai H. 1994; Purification, characterisation and crystallisation of monoamine oxidase from Escherichia coli K-12.. Biosci Biotechnol Biochem 58:1652–1656
    [Google Scholar]
  27. Shimizu E., Odawara T., Tanizawa K., Yorifuji T. 1994; Histamine oxidase, a Cu2+-quinoprotein enzyme of Arthrobacter globiformis. . Biosci Biotechnol Biochem 58:2118–2120
    [Google Scholar]
  28. Steinebach V., Groen B.W., Wijmenga S.S., Niessen W.M.A., Jongejan J.A. 1995; Identification of topaquinone, as illustrated for pig kidney diamine oxidase and Escherichia coli amine oxidase.. Anal Biochem 230:159–166
    [Google Scholar]
  29. Steinebach V., Benen J.A.E., Bader R., Postma P.W., de Vries S., Duine J.A. 1996; Cloning of the mao A gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme.. Eur J Biochem 237:584–591
    [Google Scholar]
  30. Sugino H., Ishibashi M.S., Yamashita M., Murooka Y. 1991; Gene cloning of the maoA gene and overproduction of a soluble monoamine oxidase from Klebsiella aerogenes. . Appl Microbiol Biotechnol 35:606–610
    [Google Scholar]
  31. Sugino H., Sasaki M., Azakami H., Yamashita M., Murooka Y. 1992; A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene.. J Bacteriol 174:2485–2492
    [Google Scholar]
  32. Tanizawa K., Matsuzaki R., Shimizu E., Yorifuji T., Fukui T. 1994; Cloning and sequencing of phenylethylamine oxidase from Arthrobacter globiformis and implication of Tyr-382 as the precursor to its covalently bound quinone cofactor.. Biochem Biophys Res Commun 199:1096–1102
    [Google Scholar]
  33. Tipping A.J., McPherson M.J. 1995; Cloning and molecular analysis of the pea seedling copper amine oxidase.. J Biol Chem 270:16939–16946
    [Google Scholar]
  34. Vishniac W., Santer M. 1957; The thiobacilli.. Bacteriol Rev 21:195–213
    [Google Scholar]
  35. Yamada H., Adachi O. 1971; Amine oxidase (Aspergillus niger). . Methods Enzymol 188:705–709
    [Google Scholar]
  36. Yamada H., Adachi O., Ogata K. 1965; Amine oxidases of microorganisms. Part 11. Purification and crystallization of amine oxidases of Aspergillus niger.. Agric Biol Chem 29:649–654
    [Google Scholar]
  37. Yamashita M., Sakaue M.fIwata, Sugino H., Murooka Y. 1993; Purification and characterization of monoamine oxidase from Klebsiella aerogenes. . J Ferm Bioeng 76(4):289–295
    [Google Scholar]
  38. Zhang X., Fuller J.H., Mclntire W.S. 1993; Cloning, sequencing, expression, and regulation of the structural gene for the copper/topaquinone-containing methylamine oxidase fromArthrobacter PI, a gram-positive facultative methylotroph.. J Bacteriol 175:5617–5627
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-505
Loading
/content/journal/micro/10.1099/00221287-143-2-505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error