MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes

J Mol Cell Cardiol. 2001 Apr;33(4):779-87. doi: 10.1006/jmcc.2001.1348.

Abstract

We examined the relative roles of the mitogen-activated protein kinases (MAPK) in mediating the alpha1-adrenergic receptor (alpha1-AR) stimulated hypertrophic phenotype in adult rat ventricular myocytes (ARVM). Norepinephrine (NE; 1 microM) in the presence of the beta -AR antagonist propranolol (Pro; 2 microM) caused activation of Ras (>six-fold), MAPK/ERK kinase 1 and 2 (MEK1/2, >10-fold) and extracellular signal-regulated kinases 1 and 2 (ERK1/2, approximately 30-fold) within 5 min, as determined by kinase activity assays and Western blots using phospho-specific antibodies. Conversely, p38 and c-Jun amino-terminal kinases (JNK) were not activated by NE/Pro. Activated MEK1/2 signals remained detectable at 2 h, and activated ERK1/2 remained detectable at 48 h. The alpha1-AR selective inhibitor prazosin (100 nM) completely inhibited the NE/Pro-stimulated activation of Ras, MEK1/2 and ERK1/2. The MEK inhibitor PD98059 caused a concentration-dependent inhibition of NE/Pro-stimulated protein synthesis (as assessed by [3H]leucine incorporation and cellular protein accumulation) and ERK1/2 activation, with approximately 50% inhibition at a concentration between 10 and 50 microM, which is consistent with the known IC50 values of PD98059 for MEK1 (4 microM) and MEK2 (50 microM). Thus, these data show that alpha1-AR stimulated hypertrophy in ARVM is dependent on the MEK1/2-ERK1/2 signaling pathway.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenergic alpha-Agonists / pharmacology
  • Adrenergic beta-Antagonists / pharmacology
  • Animals
  • Cardiomegaly / metabolism
  • Cells, Cultured
  • Enzyme Activation
  • Flavonoids / pharmacology
  • Heart Ventricles / cytology
  • Heart Ventricles / metabolism*
  • JNK Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • Male
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase Kinases / metabolism*
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism*
  • Norepinephrine / pharmacology
  • Prazosin / pharmacology
  • Propranolol / pharmacology
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein-Tyrosine Kinases / antagonists & inhibitors
  • Protein-Tyrosine Kinases / metabolism*
  • Proto-Oncogene Proteins c-raf / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Adrenergic, alpha-1 / metabolism*
  • p38 Mitogen-Activated Protein Kinases
  • ras Proteins / metabolism

Substances

  • Adrenergic alpha-Agonists
  • Adrenergic beta-Antagonists
  • Flavonoids
  • Receptors, Adrenergic, alpha-1
  • Propranolol
  • Protein-Tyrosine Kinases
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-raf
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • Mitogen-Activated Protein Kinase Kinases
  • ras Proteins
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one
  • Norepinephrine
  • Prazosin