The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates

Pflugers Arch. 1989 Jan;413(3):287-98. doi: 10.1007/BF00583543.

Abstract

Nonselective Ca2+-sensitive cation channels in the basolateral membrane of isolated cells of the rat exocrine pancreas were investigated with the patch clamp technique. With 1.3 mmol/l Ca2+ on the cytosolic side, the mean open-state probability Po of one channel was about 0.5. In inside-out oriented cell-excised membrane patches the substances diphenylamine-2-carboxylic acid (DPC), 5-nitro-2-(3-phenelpropylamino)-benzoic acid (NPPB) and 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) were applied to the cytosolic side. These compounds inhibited the nonselective cation channels by increasing the mean channel closed time (slow block). 100 mumol/l of NPPB or DPC decreased Po from 0.5 (control conditions) to 0.2 and 0.04, respectively, whereas 100 mumol/l of DCDPC blocked the channel completely. All effects were reversible. 1 mmol/l quinine also reduced Po, but in contrast to the above mentioned substances, it induced fast flickering. Ba2+ (70 mmol/l) and tetraethylammonium (TEA+; 20 mmol/l) had no effects. We investigated also the stilbene disulfonates 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 4,4'-dinitro-2,2'-stilbenedisulfonate (DNDS). 10 mumol/l SITS applied to the cytosolic side increased Po from 0.5 to 0.7 and with 100 mumol/l SITS the channels remained nearly permanently in its open state (Po approximately equal to 1). A similar activation of the channels was also observed with DIDS and DNDS. These effects were poorly reversible. The stilbene disulfonates acted by increasing the channel mean open time. When the channel was inactivated by decreasing bath Ca2+ concentration to 0.1 mumol/l, addition of 100 mumol/l of SITS had no effect. Similarly, reducing bath Ca2+ concentration from 1.3 mmol/l in presence of 100 mumol/l SITS (channels are maximally activated) to 0.1 mumol/l, inactivated the channels completely. These results demonstrate, that SITS can only activate the channels in the presence of Ca2+. SITS had no effects, when applied to the extracellular side in out-side out patches.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid
  • 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid / analogs & derivatives
  • 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid / pharmacology
  • Aniline Compounds / pharmacology*
  • Animals
  • Calcium Channels / drug effects*
  • Cell Membrane / metabolism
  • Cytosol / metabolism
  • Diphenylamine / analogs & derivatives
  • Diphenylamine / pharmacology*
  • Nitrobenzoates / pharmacology*
  • Pancreas / cytology
  • Pancreas / metabolism*
  • Quinine / pharmacology
  • Rats
  • Stilbenes / pharmacology*
  • ortho-Aminobenzoates / pharmacology

Substances

  • Aniline Compounds
  • Calcium Channels
  • Nitrobenzoates
  • Stilbenes
  • ortho-Aminobenzoates
  • 3',5-dichlorodiphenylamine-2-carboxylic acid
  • 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid
  • 5-nitro-2-(3-phenylpropylamino)benzoic acid
  • 4,4'-dinitro-2,2'-stilbenedisulfonic acid
  • fenamic acid
  • Diphenylamine
  • Quinine
  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid