Mechanism of synaptic inhibition by noradrenaline acting at alpha 2-adrenoceptors

Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):85-114. doi: 10.1098/rspb.1988.0039.

Abstract

The actions of agonists at alpha 2-adrenoceptors were investigated on single cells of the submucous plexus of the guinea pig small intestine. Intracellular recordings were made from neurons in vitro, and noradrenaline and other agonists were applied by adding them to the superfusion solution. The actions of noradrenaline released from terminals of sympathetic nerves was also studied by stimulating the nerves and recording the inhibitory postsynaptic current; this current can be mimicked by brief applications of noradrenaline from a pipette tip positioned within 50 micron of the neuron. The alpha 2-adrenoceptor-bound noradrenaline with an apparent dissociation constant of 15 microM, determined by the method of partial irreversible receptor inactivation: clonidine and 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304) had dissociation constants of 36 nM and 2.5 microM respectively. Noradrenaline and UK 14304 caused maximal hyperpolarizations, or outward currents; clonidine was a full agonist in only 4 of 35 cells, a partial agonist in 25 cells, and without effect in 4 cells. Clonidine acted as a competitive antagonist of noradrenaline in those cells in which it lacked agonist action; its dissociation equilibrium constant determined by Schild analysis was about 20 nM. The potassium conductance increased by the alpha 2-adrenoceptor agonists, whether they were applied exogenously or released by stimulation of presynaptic nerves, showed marked inward rectification. The neurons showed inward rectification also in the absence of agonist; both types of rectification were eliminated by rubidium (2 mM), barium (3-30 microM) and caesium (2 mM). When the recording electrodes contained the nonhydrolysable derivative of guanosine 5'-triphosphate (GTP), guanosine 5'-O-(3-thiotriphosphate, GTP-gamma-S), the effects of applied alpha 2-adrenoceptor agonists did not reverse when they were washed from the tissue, implying that GTP hydrolysis is necessary for the termination of agonist action. Pretreatment with pertussis toxin abolished the inhibitory synaptic potential (IPSP) and agonist-induced hyperpolarizations. Phorbol 12,13-dibutyrate, forskolin, cholera toxin and sodium fluoride did not affect the responses to alpha 2-adrenoceptor agonists. The synaptic hyperpolarization resulting from sympathetic nerve stimulation, or the hyperpolarization evoked by a brief (3-5 ms) application of noradrenaline, began after a latency of about 30 and 60 ms respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Animals
  • Brimonidine Tartrate
  • Clonidine / pharmacology
  • Electric Conductivity
  • Guinea Pigs
  • Membrane Potentials
  • Norepinephrine / pharmacology*
  • Potassium / metabolism
  • Quinoxalines / pharmacology
  • Receptors, Adrenergic, alpha / metabolism*
  • Synapses / drug effects*

Substances

  • Quinoxalines
  • Receptors, Adrenergic, alpha
  • Brimonidine Tartrate
  • Clonidine
  • Potassium
  • Norepinephrine