Effect of polyglutamylation of 5,10-methylenetetrahydrofolate on the binding of 5-fluoro-2'-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft

Biochem Pharmacol. 1989 Jan 15;38(2):335-42. doi: 10.1016/0006-2952(89)90046-4.

Abstract

CH2-H4PteGlu and H4PteGlu exist in human colon adenocarcinoma xenografts predominantly in the form of polyglutamate species at concentrations of less than 3 microM. The interaction of polyglutamates of [6R]CH2-H4PteGlu in the formation and stability of [6-3H]FdUMP-thymidylate synthase-CH2-H4PteGlun ternary complexes has therefore been examined using enzyme purified from a human colon adenocarcinoma xenograft. Dissociation of these complexes was first-order and was dependent upon the concentration of folate. [6R]CH2-H4PteGlu3-6 (0.9 to 1.6 microM) were greater than 200-fold and [6R]CH2-H4PteGlu2 (18.2 microM) was 18-fold more effective than [6R]CH2-H4PteGlu1 (335 microM) at stabilizing ternary complexes for a T1/2 for dissociation of 100 min. Polyglutamylation of CH2-H4PteGlu also increased the affinity of binding of [6-3H]FdUMP to thymidylate synthase as determined by Scatchard analysis at folate concentrations of 10 microM, where the Kd in the presence of [6R]CH2-H4PteGlu1 was in the order of 4.0 x 10(-8) M, and for [6R]CH2-H4PteGlu3-5 was between 3.7 and 5.5 x 10(-9) M. To examine whether this effect was due to differences in the rates at which [6-3H]FdUMP was bound (kon) or dissociated (koff) from the enzyme, the apparent rate of [6-3H]FdUMP binding was determined in the presence of [6R]CH2H4PteGlu1, [6R]CH2-H4PteGlu3 and [6R]CH2-H4PteGlu4. The kon values were similar and were in the range of 1.7 to 2.3 x 10(6) M-1 min-1 for 10 or 20 microM folate concentrations. Differences in binding affinity determined for [6R]CH2-H4PteGlu1 and longer polyglutamate forms of [6R]CH2-H4PteGlu were thus due to differences in koff. The Vmax for the initial velocity of [6-3H]FdUMP binding was achieved at 10 microM folate. Consequently, at concentrations of CH2-H4PteGlu polyglutamates present in tumors, inhibition of thymidylate synthase by FdUMP in vivo would be expected to be transient, based upon the concentration of [6R]CH2-H4PteGlun required for maximal formation and stability of the covalent ternary complex. It would be advantageous for modulation of CH2-H4PteGlun pools to increase the concentrations of the longer polyglutamate species (n greater than or equal to 3) to maximize the interaction between FdUMP, thymidylate synthase and CH2-H4PteGlu.

MeSH terms

  • Adenocarcinoma / enzymology*
  • Colonic Neoplasms / enzymology*
  • Deoxyuracil Nucleotides / metabolism*
  • Fluorodeoxyuridylate / metabolism*
  • Folic Acid / analogs & derivatives*
  • Humans
  • In Vitro Techniques
  • Kinetics
  • Pteroylpolyglutamic Acids / metabolism*
  • Structure-Activity Relationship
  • Tetrahydrofolates / metabolism*
  • Thymidylate Synthase / metabolism*

Substances

  • Deoxyuracil Nucleotides
  • Pteroylpolyglutamic Acids
  • Tetrahydrofolates
  • 5,10-methylenetetrahydrofolic acid
  • Fluorodeoxyuridylate
  • Folic Acid
  • Thymidylate Synthase