Article Text
Abstract
The effects of transport inhibitors on the movements of oxalate and chloride across the isolated short circuited rabbit colon were studied. Net oxalate absorption was shown in this species and was shown to be an energy dependent process as indicated by its sensitivity to 2-4 dinitrophenol (DNP) 10(-4)M. Mucosal addition of 4-acetamido-4-isothiocyano-2,-stilbene-2,2'-disulfonic acid (SITS) 10(-4)M abolished the net flux of both oxalate and chloride. Acetazolamide (8 mM) in bicarbonate free buffer significantly reduced the mucosal to serosal flux of both anions. These results suggest that in rabbit colon, oxalate and chloride share a common transport pathway and implicate the chloride bicarbonate exchange system. This study also confirms that chloride absorption by the short circuited rabbit colon is an electrically silent process and presents evidence that suggests that chloride absorption is mediated by a chloride bicarbonate exchange system located in the apical membrane of absorbing colonic epithelial cells.