Article Text

Download PDFPDF

Acute effects of dexamethasone on cation transport in colonic epithelium.
  1. G I Sandle,
  2. F McGlone


    Single pharmacological doses of glucocorticoid hormones stimulate net Na+ and water absorption, K+ secretion and electrical potential difference in rat distal colon and human rectum after five hours. To determine the cellular basis of these effects, the Na+ and K+ transport properties of epithelial cell membranes in rat distal colon were studied in vitro five hours after in vivo treatment with dexamethasone 600 micrograms/100 g body weight. Compared with control tissues, dexamethasone increased transepithelial voltage 3.5-fold (p less than 0.001) and short circuit current 4.5-fold (p less than 0.001), and decreased total resistance by 20% (p less than 0.005). Measurements of cell membrane voltages obtained with intracellular microelectrodes indicated that the dexamethasone-induced rise in transepithelial voltage reflected a significant decrease (p less than 0.05) in apical membrane voltage, consistent with the induction of apical Na+ channels and the stimulation of electrogenic Na+ absorption. Apical addition of 10(-4) mol/l amiloride (a Na+ channel blocker) and then 30 mmol/l tetraethylammonium chloride (TEA; a K+ channel blocker) to control tissues had little or no effect on transepithelial electrical parameters, indicating the absence of significant apical Na+ and K+ conductances. In contrast, in dexamethasone treated tissues, amiloride and TEA produced electrical changes that were consistent with the inhibition of glucocorticoid-induced apical Na+ and K+ conductances. Kinetic studies of the basolateral membrane Na+-K+ pump revealed that five hours after administration, dexamethasone had no effect on the maximum capacity of the pump for Na+ transport, but significantly increased the affinity of the pump for Na+, and the number of Na+ ions binding to each pump site. Thus, the acute stimulatory effects of dexamethasone on distal colonic Na+ absorption and K+ secretion reflect increased apical membrane conductance to Na+ and K+, and an increase in the 'efficiency' of the basolateral membrane Na+-K+ pump.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.