Article Text
Abstract
The intestinal component of a graft-versus-host reaction (GvHR) provides a useful experimental model to elucidate the pathogenesis of clinical enteropathies which cause villus atrophy and crypt hyperplasia and which are associated with a local immune response. One to three days after induction of GvHR in heavily irradiated (CBAxBALB/c)F1 mice, a proliferative form of enteropathy developed. Compared with controls, these mice had increased counts of jejunal intraepithelial lymphocytes and had a four-fold increase in crypt cell production rate as well as an increase in crypt length. These changes were accompanied by a marked enhancement of splenic natural killer cell activity. After day three, the crypt cell production rate fell to zero and cytotoxic T lymphocytes (CTL) which could lyse targets of host origin appeared. In parallel, mice with GvHR developed significant villus shortening and their clinical condition deteriorated. Further experiments showed that increased counts of intraepithelial lymphocytes, villus atrophy and crypt hyperplasia also occurred in grafts of fetal CBA intestine implanted under the kidney capsule of (CBAxBALB/c)F1 mice with GvHR. As these grafts are syngeneic to the injected CBA spleen cells, they should not be attacked by anti-host cytotoxic T lymphocytes. We suggest that the proliferative and destructive components of enteropathy in GvHR are caused by lymphokines released by an anti-host delayed type hypersensitivity reaction.