Article Text

Download PDFPDF

Acute ethanol administration induces oxidative changes in rat pancreatic tissue.
  1. E Altomare,
  2. I Grattagliano,
  3. G Vendemiale,
  4. V Palmieri,
  5. G Palasciano
  1. Institute of Clinica Medica I, University of Bari, Italy.


    BACKGROUND--There is mounting clinical evidence that ethanol toxicity to the pancreas is linked with glutathione depletion from oxidative stress but there is not experimental proof that this occurs. AIMS AND METHODS--The effect of acute ethanol ingestion (4 g/kg) on the pancreatic content of reduced (GSH) and oxidised (GSSG) glutathione, malondialdehyde (MDA), and carbonyl proteins were therefore studied in the rat. RESULTS--Ethanol caused a significant reduction in GSH (p < 0.02) and an increase in GSSG (p < 0.005), MDA (p < 0.05), and carbonyl proteins (p < 0.05) in the rat pancreas. The GSH/GSSG ratios were significantly decreased after ethanol, especially in rats pretreated with diethylmaleate (DEM), a GSH blocker. Administration of ethanol after DEM further increased the rate of lipid and protein oxidation. Pretreatment with cyanamide (an inhibitor of aldehyde dehydrogenase) but not with 4-methylpyrazole (an alcohol dehydrogenase inhibitor) caused higher production of GSSG and MDA. CONCLUSIONS--These findings indicate that acute ethanol reduces the pancreatic content of GSH, which seems to be protective against ethanol toxicity, since its depletion is accompanied by increased oxidative damage to cell structures. The further increase of lipid peroxidation and GSSG production in the presence of cyanamide suggests that acetaldehyde might be responsible for the oxidative changes that occur in pancreatic cells after ethanol administration.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.