Article Text

Download PDFPDF
Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis.
  1. A D Millar,
  2. D S Rampton,
  3. C L Chander,
  4. A W Claxson,
  5. S Blades,
  6. A Coumbe,
  7. J Panetta,
  8. C J Morris,
  9. D R Blake
  1. Gastrointestinal Science Unit, London Hospital Medical College.


    BACKGROUND: Reactive oxygen species may mediate tissue injury in inflammatory bowel disease. Aminosalicylates have antioxidant activity and the antioxidants, superoxide dismutase and allopurinol, are of reported benefit in inflammatory bowel disease. AIM: To develop a convenient technique for testing the antioxidant potential of standard and novel therapeutic agents for use in inflammatory bowel disease. METHODS: Amplified chemiluminescence was used to measure reactive oxygen species production by colonic biopsy specimens from rats with acetic acid induced colitis and to assess the in vitro effect of conventional antioxidants, standard therapies and proposed novel therapies for inflammatory bowel disease. RESULTS: The model was validated by demonstrating that the profile of effects on chemiluminescence of acetic acid induced colitis biopsy specimens given by conventional antioxidants (sodium azide, catalase, copper-zinc superoxide dismutase, dimethyl sulphoxide, N-acetylcysteine and ascorbate) and standard therapies (5-aminosalicylate and hydrocortisone) resembled that previously reported using biopsy specimens from ulcerative colitis. Human recombinant manganese superoxide dismutase did not alter chemiluminescence. Two novel compounds, LY231617 (10 mM) and amflutizole (20 mM), reduced chemiluminescence by 98% (n = 5, p = 0.009) and 88% (n = 5, p = 0.03), respectively. CONCLUSIONS: The similarity of the chemiluminescence responses of colonic biopsy specimens from acetic acid induced colitis and ulcerative colitis to a range of conventional antioxidants and standard treatments suggests that this model is a useful method for testing the antioxidant potential of new therapies for inflammatory bowel disease. The antioxidant actions of dimethyl sulphoxide, ascorbate, and the novel compounds, amflutizole and LY231617 in this model suggest that these agents merit further assessment in the treatment of inflammatory bowel disease.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.