Article Text

Download PDFPDF
Magnetic resonance cholangiopancreatography
  1. Department of Radiology, University of Cambridge and Addenbrooke’s Hospital, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Non-invasive imaging techniques such as ultrasound (US) or computed tomography (CT) are widely used for the diagnosis and monitoring of many pancreatic and biliary tract diseases. However, these techniques have limitations, such as the low sensitivity of ultrasound for detecting common duct calculi, which means that the diagnosis of several common conditions including tumours (benign and malignant), calculi, sclerosing cholangitis and chronic pancreatitis may still require invasive procedures such as endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography (PTC).

These invasive techniques also have disadvantages—for example, ERCP requires direct cannulation of the common bile or pancreatic duct, sedation, the use of ionising radiation and a team of trained, experienced personnel. Complications include haemorrhage, sepsis, pancreatitis, bile leakage, as well as a recognised mortality.1 ERCP may not be technically possible and this, along with the complication rate, has been related to operator experience.2 In clinical practice these complications are usually offset by the diagnostic information obtained and the ability to proceed immediately to therapeutic intervention when required.

Magnetic resonance cholangiopancreatography (MRCP) is a relatively new technique for non-invasive imaging of the biliary and pancreatic duct systems. Early trials suggest that it may have a useful role in clinical practice.

The MRCP technique

“MR cholangiopancreatography” refers to a range of techniques for imaging the biliary tree and pancreatic duct that all exploit the intrinsically long T2 relaxation value of many fluids, including biliary and pancreatic duct secretions. The techniques may be classified by: the MR “refocussing” method used (that is, gradient echo or spin echo), image data collection (that is, 2D or 3D), requirement for image processing to suppress background tissues, type of “receiver” coil (that is, body or specialised surface coils), and the approach used to minimise motion related artefacts especially those related to respiration.

Early attempts to image the biliary and …

View Full Text