Article Text

Download PDFPDF
Hepatopulmonary syndromes
  1. M J KROWKA
  1. Divisions of Pulmonary and Critical Care Medicine
  2. and Gastroenterology and Hepatology
  3. Mayo Clinic and Mayo Foundation
  4. 200 First Street SW, Mayo Clinic E18
  5. Rochester, MN 55905, USA
  6. email: krowka@mayo.edu

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    The lungs are “downstream” from the liver. The effects of venous blood (flow and constituents) arising in the liver and portal system and which subsequently traverses the pulmonary arterial and capillary system, seem to be quite subtle in the “normal” situation. Dysfunction of either the lungs or liver may dramatically alter this steady state condition and affect the other organ. For example, severe arterial pathology originating within the lungs, as seen in primary pulmonary hypertension, can have a profound “backflow” vascular impact on the normal liver, with resultant hepatic congestion and ascites. Alternatively, liver disorders causing portal hypertension (cirrhotic or non-cirrhotic) may result in a high flow, hyperdynamic circulatory state and an imbalance between vasoconstrictors, vasodilators, and other mediators metabolised or synthesised by the liver. The pulmonary consequences of hepatic dysfunction may have dramatic clinical relevance and have been considered hepatopulmonary syndromes. Such pathophysiologies of recent interest are the focus of this article (table1).

    View this table:
    Table 1

    Pulmonary consequence of advanced liver disease

    Pulmonary consequences

    HEPATOPULMONARY SYNDROME

    The triad of liver disease, arterial hypoxaemia, and intrapulmonary vascular dilatation has defined an entity commonly referred to as the hepatopulmonary syn- drome.1-3 In the original description by Rydell and Hoffbauer,4 lung necropsy specimens studied using plastic vascular casts contained both precapillary/capillary dilatations and distinct anatomic arteriovenous communications which caused severe hypoxaemia in the setting of chronic liver disease (juvenile cirrhosis). Subsequent investigations using the multiple inert gas elimination techniques (MIGET) and 100% inspired oxygen, have shown that hypoxaemia results from low ventilation to perfusion ratios (ventilation with excess perfusion) in the case of the precapillary/capillary dilatations, and anatomic shunting (perfusion with no ventilation) in the case of direct arteriovenous communications.1 Therefore, the response to supplemental inspired oxygen, which includes near normalisation of Pao 2 while breathing 100% oxygen, is quite variable and depends …

    View Full Text

    Footnotes

    • Leading articles express the views of the author and not those of the editor and editorial board.

    • Abbreviation used in this article:
      99mTcMAA
      technetium labelled macroaggregated albumin