Article Text
Abstract
Background and aims: Bacterial infections are common complications in patients with acute pancreatitis, and translocation of bacteria from the intestinal lumen is probably the first step in the pathogenesis of these infections. As blood cultures in afebrile patients are usually negative, more sensitive methods to investigate this hypothesis in patients are needed. Our group has recently developed a method to detect the presence of bacterial DNA in biological fluids, and we aimed to detect bacterial DNA in patients with acute pancreatitis, as molecular evidences of bacterial translocation.
Methods: Samples of blood were obtained on three consecutive days within the first six days after admission. Bacterial DNA was detected using a polymerase chain reaction based method, and an automated DNA nucleotide sequencing process allowed identification of bacteria species.
Results: Thirty one consecutively admitted patients with acute pancreatitis were studied. Bacterial DNA was detected in six patients (19.3%), and the sequencing process allowed identification of Citrobacter freundii and Pseudomonas aeruginosa. In two patients the same bacteria detected at admission was detected 24 hours later (above 99.9% homology of nucleotide sequence). Basic clinical and biochemical characteristics were similar among patients with or without the presence of bacterial DNA.
Conclusion: Detection of gram negative bacteria derived bacterial DNA in our series supports the contention that bacterial translocation is a systemic process in approximately 20% of patients with acute pancreatitis that does not seem to be related to the severity of the episode or immediate development of infection.
- AP, acute pancreatitis
- BT, bacterial translocation
- GNB, gram negative bacteria
- bactDNA, bacterial DNA
- PCR, polymerase chain reaction
- CRP, C reactive protein
- bp, base pairs
- bacterial translocation
- bacterial DNA
- human
- pancreatitis
- polymerase chain reaction
Statistics from Altmetric.com
Footnotes
-
Conflict of interest: None declared.