Article Text

Download PDFPDF
Original article
Treatment scale-up to achieve global HCV incidence and mortality elimination targets: a cost-effectiveness model
  1. Nick Scott1,2,
  2. Emma S McBryde1,3,4,
  3. Alexander Thompson4,5,
  4. Joseph S Doyle1,5,6,
  5. Margaret E Hellard1,2,7
  1. 1 Centre for Population Health, Burnet Institute, Melbourne, Victoria, Australia
  2. 2 Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia
  3. 3 Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
  4. 4 Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
  5. 5 Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
  6. 6 Victorian Infectious Diseases Service at the Doherty Institute, Melbourne Health, Melbourne, Victoria, Australia
  7. 7 Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
  1. Correspondence to Dr Nick Scott, Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia; Nick.Scott{at}burnet.edu.au

Abstract

Aims The WHO's draft HCV elimination targets propose an 80% reduction in incidence and a 65% reduction in HCV-related deaths by 2030. We estimate the treatment scale-up required and cost-effectiveness of reaching these targets among injecting drug use (IDU)-acquired infections using Australian disease estimates.

Methods A mathematical model of HCV transmission, liver disease progression and treatment among current and former people who inject drugs (PWID). Treatment scale-up and the most efficient allocation to priority groups (PWID or patients with advanced liver disease) were determined; total healthcare and treatment costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) compared with inaction were calculated.

Results 5662 (95% CI 5202 to 6901) courses per year (30/1000 IDU-acquired infections) were required, prioritised to patients with advanced liver disease, to reach the mortality target. 4725 (3278–8420) courses per year (59/1000 PWID) were required, prioritised to PWID, to reach the incidence target; this also achieved the mortality target, but to avoid clinically unacceptable HCV-related deaths an additional 5564 (1959–6917) treatments per year (30/1000 IDU-acquired infections) were required for 5 years for patients with advanced liver disease. Achieving both targets in this way cost $A4.6 ($A4.2–$A4.9) billion more than inaction, but gained 184 000 (119 000–417 000) QALYs, giving an ICER of $A25 121 ($A11 062–$A39 036) per QALY gained.

Conclusions Achieving WHO elimination targets with treatment scale-up is likely to be cost-effective, based on Australian HCV burden and demographics. Reducing incidence should be a priority to achieve both WHO elimination goals in the long-term.

  • COST-EFFECTIVENESS
  • HEPATITIS C
  • EPIDEMIOLOGY

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.