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Life is fragile: FMRP controls cell death 
in liver disease
Mihael Vucur, Tom Luedde  ‍ ‍ 

Acute and chronic liver diseases due to 
various pathogens have in common that 
cellular stress and cell death represent 
their initial triggers. While in acute liver 
damage and especially in acute liver 
failure, the loss of functional hepatocytes 
is the dominant, life-limiting factor, low 
levels of cell death in chronic diseases like 
non-alcoholic fatty liver (NASH) or alco-
holic liver disease initiate a cascade of 
immunological cell death responses, 
driving the progression to liver cirrhosis 
and finally to hepatocellular carcinoma.1 
On a molecular level, hepatocytes that 
undergo programmed cell death release 
factors known as danger-associated molec-
ular patterns, which activate immune cells 
(macrophages) and hepatic stellate cells, 
and are thus involved in chronic phase 
transition of liver diseases and 
decompensation.1

For years, the term apoptosis was used 
synonymously with the term ‘programmed 
cell death’. Nevertheless, this highly 
simplified dogma was swept away over 
night when it was discovered that apop-
tosis was accompanied by several other 
programmed cell death signalling path-
ways, and that necrosis was not only a 
passive form of cell death, for example, in 

the context of ischaemia, but that necrosis, 
could also be regulated.2 One important 
form of programmed necrosis is called 
necroptosis mediated by the molecules 
receptor-interacting serine/threonine-
protein kinase (RIPK)-1, RIPK3 and 
mixed lineage kinase domain-like protein 
(MLKL).3 The exact role of necroptosis 
in liver biology and pathophysiology is 
currently not well understood, which 
is mainly due to the lack of simple and 
specific tools to detect activation of necro-
ptosis in vivo.3 However, it was shown 
that necroptosis is the dominant cell death 
pathway over apoptosis in NASH and 
NASH fibrosis.4

At present, it is not fully understood how 
necroptosis works, but it is assumed that 
by different phosphorylation and ubiquiti-
nation processes, for example, by tumour 
necrosis factor (TNF) stimulation and 
simultaneous inhibition of caspase-8, the 
formation of a RIPK1–RIPK3-containing 
complex, the so-called necrosome, leads to 
activation and multimerisation of MLKL 
molecules that form pores within the cell 
membrane and execute necrosis.5 Inter-
estingly, new interactions of molecular 
signalling pathways have recently been 
discovered that previously had not been 
associated with the execution of apoptosis 
or necroptosis.6 7 Therefore, the molec-
ular regulation of the apoptosis and necro-
ptosis machinery might be more complex 
than previously suspected, suggesting that 
further molecular interactions with these 
pathways might soon be discovered.

In the paper of Zhuang and colleagues 
published in Gut,8 the authors provide 
evidence for a previously unrecognised 
role of fragile X mental retardation 
protein (FMRP) in protecting the liver 
from TNF-induced cell death. Mutations 
in the FMR1-gene encoding for FMRP 
represent a major cause of inherited 
intellectual disability within the fragile 
X mental retardation (FMR) syndrome,9 
but the role of this gene outside the 
central nervous system and specifically in 
the liver was previously unclear. In their 
paper, they provide evidence that FMRP 
has a protective role in several liver injury 
models including cholestasis, septic shock 
models and viral hepatitis (figure 1), which 
might have important clinical implications 
not only for FMR patients but also for the 
development of novel protection strate-
gies in acute and chronic liver disease.

On a molecular level, the authors 
provide evidence that FMRP might 
control the activation of RIPK1, a central 
signalling nexus involved in the regulation 
of both apoptosis and necroptosis in the 
liver.10–12 In this line, the authors provided 
quite intriguing data suggesting the activa-
tion of both of these cell death pathways 
in FMRP-defective liver cells (figure  1).8 
On one hand, these data are in line with 
the dual role of RIPK1 in controlling 
apoptosis and necroptosis.12 On the other 
hand, there are not many examples that 
we know of that clearly showed that 
cells do activate both cell death pathways 
simultaneously. Therefore, it would be of 
high interest to clarify the molecular role 
of FMRP on a deeper molecular level and 
specifically nail down the exact molecular 
interaction between FMRP and RIPK1 
and/or other molecules of the apoptosis 
and necroptosis machinery. Ultimately, 
this interesting current study and future 
studies on FMRP and other comodulatory 
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molecules might reveal that our unidimen-
sional, linear view of cell death signalling 
pathways is too simplistic, and that instead 
transitional states between cell death 
signalling pathways exist that will make 
it much more complex to define specific 
clinical targeting strategies.
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Figure 1  The deficiency of FMRP triggers context-specific, TNF-mediated apoptosis and 
necroptosis in liver tissue. In FMRP-deficient mice, liver injury following bile duct ligation or TNF/
GalN administration can be alleviated by Nec-1s treatment, indicating RIPK1 dependent cell death 
activation. FMRP’s direct target(s) still need(s) to be explored. FADD, FAS-associated death domain 
protein; FMRP, fragile X mental retardation protein; MLKL,mixed lineage kinase domain-like 
protein; RIPK,receptor-interacting serine/threonine-protein kinase; TNF, tumour necrosis factor.
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