Article Text

Download PDFPDF
Deep-learning based detection of gastric precancerous conditions

Statistics from


  • Contributors PG: programming of the deep-learning algorithm, image analysis, statistics, manuscript preparation. AK: revision and editing of the manuscript, supervision of the artificial intelligence part, idea for the study. TF: Programming of the web-based software tool. FL: revision and editing of the manuscript; supervision of the clinical part, idea for the study. MC: manuscript preparation, patient identification and coordination of image evaluation by endoscopists.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Patient consent for publication Not required.

  • Ethics approval The study was approved by the ethics committee of Ärztekammer des Saarlandes (Saarbrücken, Germany; #36/19).

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.