Article Text

Download PDFPDF
Original research
KLHL21 suppresses gastric tumourigenesis via maintaining STAT3 signalling equilibrium in stomach homoeostasis

Abstract

Objective Precancerous metaplasia transition to dysplasia poses a risk for subsequent intestinal-type gastric adenocarcinoma. However, the molecular basis underlying the transformation from metaplastic to cancerous cells remains poorly understood.

Design An integrated analysis of genes associated with metaplasia, dysplasia was conducted, verified and characterised in the gastric tissues of patients by single-cell RNA sequencing and immunostaining. Multiple mouse models, including homozygous conditional knockout Klhl21-floxed mice, were generated to investigate the role of Klhl21 deletion in stemness, DNA damage and tumour formation. Mass-spectrometry-based proteomics and ribosome sequencing were used to elucidate the underlying molecular mechanisms.

Results Kelch-like protein 21 (KLHL21) expression progressively decreased in metaplasia, dysplasia and cancer. Genetic deletion of Klhl21 enhances the rapid proliferation of Mist1+ cells and their descendant cells. Klhl21 loss during metaplasia facilitates the recruitment of damaged cells into the cell cycle via STAT3 signalling. Increased STAT3 activity was confirmed in cancer cells lacking KLHL21, boosting self-renewal and tumourigenicity. Mechanistically, the loss of KLHL21 promotes PIK3CB mRNA translation by stabilising the PABPC1-eIF4G complex, subsequently causing STAT3 activation. Pharmacological STAT3 inhibition by TTI-101 elicited anticancer effects, effectively impeding the transition from metaplasia to dysplasia. In patients with gastric cancer, low levels of KLHL21 had a shorter survival rate and a worse response to adjuvant chemotherapy.

Conclusions Our findings highlighted that KLHL21 loss triggers STAT3 reactivation through PABPC1-mediated PIK3CB translational activation, and targeting STAT3 can reverse preneoplastic metaplasia in KLHL21-deficient stomachs.

  • GASTRIC CANCER
  • DNA DAMAGE
  • STEM CELLS
  • CHEMOTHERAPY
  • CELL SIGNALLING

Data availability statement

Data are available in a public, open access repository. Data are available on reasonable request. The RIP-seq and polysome-seq data that provide evidence for the findings presented in this study have been deposited in the Gene Expression Omnibus under the accession number GSE163310. The source of the mouse scRNA-seq data was downloaded from the National Center for Biotechnology Information under the accession number SRP227356.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.