Progress report

Membrane digestion

By the end of the 1950s the extensive investigations which laid the foundations for certain basic current concepts were complete, namely, the digestive function of the intestinal cells; the integration of the processes of digestion proper and of transport during digestion; and the pathology of enterocytes and other cells. And they may be summarized as follows: (1) the free surface of the enterocyte represents an aggregate of microvilli; (2) hydrolysis of oligomers, i.e., the final stages of digestion, is being accomplished during absorption by enzymes bound to the enterocyte structures; (3) numerous enzymes, in particular alkaline phosphatase and the aminopeptidases, are concentrated within the brush border zone. The final link in the understanding of these processes is that oligomers as such penetrate inside the intestinal cells where the final stages of hydrolysis and further transport of monomers take place.

The Digestive Functions of Enterocytes

Simultaneously, at the end of the 1950s and the beginning of the 1960s, two different hypotheses to explain these facts were presented, namely, (1) the concept of apical intracellular digestion and (2) that of membrane digestion. Evidence is increasing to suggest that the first hypothesis is untenable.

Membrane digestion, in addition to the two early known types—distant extracellular and intracellular—is considered to be a system of the digestive processes occurring under the influence of the enzymes situated on the external surface of the membrane. We had the good fortune to be able to demonstrate that the external surface of the brush border is a morphological substrate of a new, previously unknown type of digestion (membrane) which appeared to be associated with the adsorption of pancreatic enzymes to the surface of the intestinal mucosa. (Due to the large size of amylase molecules (molecular weight is about 45 000) their penetration into the cells was excluded.) Evidence of the rapid and complete loss of enzyme from fluid as it adsorbs onto membrane (desorption) supported our arguments even more forcibly. Adsorbed amylase was shown to hydrolyze intensively the soluble (not colloidal) starch. In practice, it was found at the same time that enteric enzymes, in particular disaccharidases and dipeptidases, produce their effect not intracellularly but at the external surface of the cell membranes. In man and mammals, membrane digestion is accomplished at the surface of the microvilli of the enterocyte. This idea was first reported in 1959 and discussed in a number of reports.

Those enzymes which ensure membrane digestion (Fig. 1) may have two
origins: (1) enteric enzymes synthesized by enterocytes and structurally associated with the external surface of their membrane, and (2) enzymes adsorbed from the intestinal cavity.

Indeed, I was able to write in the *Physiological Review*50: 'Cavital digestion is produced by enzymes secreted into the cavity of the gastrointestinal tract. Membrane digestion is due to enzymes adsorbed from chyme and enzymes structurally associated with the membrane of the intestinal cells. Consequently, study of enzymatic functions of digestive glands and properties of digestive juices cannot answer all questions of the physiology of digestion'.

It should be stressed that the nature of the bonds of the enteric enzymes with the membrane structures of the microvilli remains unknown. The terms employed in the literature 'structurally associated enzymes' or 'enzymes, which are the integral part of the membrane structure,' lack physical or chemical sense as they do not reflect the forces ensuring preservation of the enzyme-membrane complexes. It is known only that the majority of intestinal peptidases are easily solubilized *in vitro* while disaccharidases, alkaline phosphatase, and aminopeptidase can be solubilized by treating the enzyme-membrane complexes with proteases (papain, trypsin) and other detergents (Triton X-100)18,54-62.
Membrane digestion

The general scheme of membrane digestion as a process completing the hydrolysis and associated with absorption was proposed in 1959-60 and is illustrated in Figure 2. Later it was developed and defined concretely in line with the success achieved in the study of the role of membranes in the body and with the progress in our knowledge of their digestive and transport functions51,52.

During the 1960s about 20 independent experimental criteria were used to prove the fact that oligosaccharide and peptide hydrolysis occurs exclusively or mainly at the external membrane surface60,62,63,64. Of particular significance are the electron-microscope studies by Oda and Seki, Johnston, and others65-69, who have demonstrated the presence of globules of 50 to 60 Å in diameter at the external membrane surface using the negative contrast of the brush border. These globules were solubilized and turned out to be at least the bearers of disaccharidase activity.

Four different viewpoints on the mechanism of the final stages of hydrolysis existed before 196670. Since that time investigators have accepted the membrane hypothesis. Judging from the later publications of Crane and his group, they themselves have joined this majority63,71-75,76.

Following the first research refuting the significance of enzyme adsorption for membrane digestion came the first support for this mechanism77,81. At present, adsorption of such pancreatic enzymes as amylase38,40,43,52,77-81, lipase82-85, and protease37,47 is shown. It is very likely that other enzymes, such as pancreatic DNA-ase and RNA-ase, may be adsorbed and participate in membrane digestion.

A detailed analysis of adsorption mechanisms revealed, first, that both the physical and chemical aspects of adsorption are of importance; secondly, adsorption is possible on both lipoprotein and mucopolysaccharide structures40,43,51,52,70,86-83.

The detailed scheme of the interrelationship between cavital and membrane digestion with no food substances present (I) and in their presence (II). 1 Enzymes in the intestinal cavity; 2 microvilli; 3 enzymes (adsorbed and enteric) on the microvillous surface; 4 the brush border pores; 5 bacteria; 6, 7 food substances at the different stages of hydrolysis.
The analysis of the structure and functions of the brush border glycocalix made first by Ito\(^94\) and later by other authors\(^95\text{-}101\) appeared of particular significance for the development of the membrane digestion concept. Indeed Ito was the first to pay attention to the importance of this structure in the processes of membrane digestion.

The Characteristics of Membrane Digestion

The basic functional and structural characteristics of membrane digestion are illustrated in Fig. 2 and are set out as follows:

Membrane digestion is carried out at the external surface of the membrane of microvilli by the enteric and adsorbed enzymes. Therefore, the final stages of digestion are integrated and the initial stages of transport are begun. It occurs in the zone inaccessible to bacteria, thus ensuring sterility of the final stages of hydrolysis. Membrane digestion, as any other catalysis on the surface, depends on the rate at which substances pass from liquid medium onto the surface and under normal conditions that depends upon intestinal motility.

The size of the pores of the brush border and of the glycocalix allows the segregation of larger structures from smaller ones thus providing for the consequent treatment of food, first in the cavity then at the surface. Thanks to the continuous elimination of the intermediate products of hydrolysis into the membrane digestion zone, digestion in the cavity is intensified.

Many characteristics of the solubilized enzymes and those bound to membrane differ from each other, in particular \(K_m\), \(V_{max}\), and thermostability.

Fig. 3 Enteric and adsorbed enzymes during membrane digestion (the scheme of the fragment of the microvillus luminal surface). A Distribution of enzymes; B interrelationship of enzymes, carriers and substrates. I cavity; II glycocalix; III three-layered membrane; IV glycocalix luminal surface; V three-layered membrane luminal surface. 1 Intestinal enzymes proper; 2 adsorbed enzymes; 3 carriers; 4 substrates.
Owing to fixation of enzymes at the external surface of the membrane, the structural organization of membrane hydrolysis and transport processes is possible. Physicochemical conditions in the membrane digestion zone vary from those of the digestive cavities.

Figure 3 shows a fragment of membrane with a glycocalix, the approximate correlation of enzymes and structures being observed. As can be seen, the normal course of membrane digestion requires the presence of both enteric enzymes proper and adsorbed enzymes. In fact, the enteric and adsorbed enzymes functionally supplement each other and simultaneously seem to enhance the reliability of the system as a whole. It is assumed that enteric enzymes are structurally connected with the external surface of a three-layered membrane which ensures the effective conveyance of the final products (glucose, amino acids) from enzyme onto the carrier. Adsorbed enzymes can be situated on all the structures of the external surface of the microvillus.

It is obvious that substrates included in chyme do not directly contact the three-layered membrane; they must pass through the glycocalix space. Their penetration into the glycocalix is facilitated by enzymes, adsorbed to the free surface of the latter, and further on passing enzymes inside the glycocalix space. Thus, the movement across the glycocalix space is accompanied by an intense depolimerization of food substances. Some supplementary hydrolysis by means of adsorbed enzymes is possible at the external surface of the lipoprotein membrane, but the chief enzymes are enteric enzymes represented mainly by dimer and oligomerhydrolases.

Such localization of disaccharidases, di-amino-, and oligopeptidases is likely to ensure the highly effective conveyance from the final enzyme onto the entrance into the transport system, in particular, onto the labile carrier (Fig. 4).

Within the limits of the main arguments concerning membrane digestion (hydrolysis is completed at the external surface of the membrane and its
products are transported across the membrane) a number of hypotheses have been suggested to explain the extreme efficiency of the digestive-transport conveyor. They all, finally, agree that enzyme and carrier form the spatial and functional integration; one such scheme is represented in Figure 5. Thus the membrane digestion apparatus represents a highly complex structure with elements of a different nature and origin, which is in agreement with the current idea of 'thick' membranes.

The membranous surface of the microvillus seems to exercise not only digestive-transport functions but those of a protective barrier as well. In fact, the glycocalix, together with its enzymes, forms a specialized filter which allows adequate amounts of substrates to pass but traps the other molecules. The glycocalix is also an ion exchanger and a molecular sieve.

Thus, membrane digestion is one of the three basic stages in the activity of the alimentary tract: it accepts the products of intermediate hydrolysis from the cavity (by which all the cavital processes are intensified); it accomplishes the hydrolysis of 70 to 80% of the primary molecular bindings in food biopolymers; and it couples the digestive processes proper and those of transport.

Membrane Digestion as a Clinical Problem

Membrane digestion should be taken into account for the better under-
standing of the aetiology of a number of diseases and for promoting progress in diagnostic and therapeutic research. We have considered this problem in detail earlier and it will be the subject of a special review. Here we shall dwell only on certain consequences following upon the idea of membrane digestion.

Enzyme Adsorption Disorders

Hooft and others\(^{115}\) were the first to show that in certain forms of starch malabsorption \(\alpha\)-amylase activity in the cavity remains normal but the capacity of the mucosa, obtained from biopsy in such patients, to adsorb amylase is greatly decreased.

Masevich, Zabelinskii, and Ugolev\(^{116}\) have developed the fraction technique of investigating enzyme adsorption. Figure 6 shows typical examples of the mucosal amylolytic spectral disorders. As can be seen, such a technique allows the differentiation of disorders in the amylolytic activity in the intestinal content, the adsorption properties of the surface, and \(\alpha\)-amylase activity dependent upon proteolytic processes in the enterocyte itself.

Recently, changes in lipase adsorption have been seen in patients suffering from atherosclerosis when compared with healthy controls\(^{117}\).

Different enzyme maladsorptions were revealed also in such diseases as enteritis, enterocolitis, and diseases of the biliary ducts\(^{81}\). Adsorption defects could be both isolated and combined with damage to the villous structures and disturbances in the epithelial element in proteosynthesis.

It is of interest that disorders of membrane digestion are likely to appear earlier than can be seen by histological and histochemical changes.

Synthesis and Migration of Enteric Enzymes in Disease

Studies of genetic and acquired defects of the enzymatic properties of enterocytes shed light upon a great number of diseases of the digestive system. Information was obtained by means of loading studies and by investigation of the enzymatic properties of mucosa obtained by biopsy. In both cases homogenates of a specimen were mainly used.

In terms of membrane digestion, functioning of the enteric enzymes (disaccharidases, peptidases, etc) is determined by the two successive processes of intracellular synthesis and further progress to the external membrane surface.

There are two possibilities: enzymes are being included either in the composition of a waiting microvillous membrane structure or built into the subunits of the membrane intracellularly so that the enzyme-membrane blocks are included in the composition of the microvillus\(^{58}\).

It is obvious that investigation of homogenates provides only a notion of the state of enzyme synthesis but not of the transfer of enzymes and therefore not of their actual functioning. For this reason our laboratory has developed a technique based on the comparison of intact and homogenized mucosa\(^{52,118-120}\) as the investigation of homogenates led to a considerable loss of information. Many enzymatic defects remain beyond the understanding both of the laboratory investigator and the clinician.

It is important to remember that in the same disease certain enzymatic defects can depend on disorders of synthesis and others on disturbances of
transfer. For example, in severe x-ray injuries hydrolysis of both disaccharides and peptides is completely stopped. But the absence of invertase activity depends on the suppression of synthesis whereas peptidase is synthesized in amounts close to normal but it is not included in the membrane of the microvillus (Fig. 7). Restoration of normal interactions between the synthesis and transfer of the enteric enzymes after irradiation injuries is essentially important for a better insight into the restoration processes.

It is interesting that under the influence of different stresses disorders of the enterocyte digestive function depend rather on disturbances of transfer than on enteric enzyme synthesis.

Other Defects of Membrane Digestion

It is clear that disorders of membrane digestion can take place not only as a result of disturbances in the enteric cell functions but in all those situations in which hydrolysis is decreased at the intestinal surface as a whole. When hydrolysis in the digestive cavity is slowed as a result of deficiency of the basic digestive glands membrane digestion is impaired due to an insufficient supply of substrates into the brush border zone. This is accompanied by the enzymatic and transport functions of distal portions of
small intestine being greatly enhanced, a situation which is defined by Booth as a 'reserved zone'. In severe cases food which has not been utilized can enter the large intestine unchanged.

In disturbances of motility of the small intestine the increased passage shortens the time of contact between food and digestive surface and, therefore, decreases the volume of membrane digestion. As soon as the entry of substances into the brush border is determined by convection and not by diffusion, the effectiveness of membrane hydrolysis is reduced so as to impair the action of chyme stirring the contents of the small intestine.

The total volume of membrane hydrolysis can diminish as a result of a reduction in the epithelial population in the small intestine, first, due to its shortening, as in surgical operations, and secondly to smaller numbers of enterocytes in the villi ('atrophy of villi').

Thus, disorders of the enterocyte digestive functions are all disorders of membrane digestion, but the pathology of membrane digestion is wider since it can be brought about by factors other than those of the enterocytes.

Until now we have been considering membrane digestion as a process which when disordered can be the cause of various diseases. It should be noted, however, that in many cases membrane digestion is a process compensating for the defects of cavital digestion. This was demonstrated, in particular, in connexion with the assimilation of polysaccharides when the external secretory function of the pancreas was excluded.

Conclusion

Membrane digestion is the third fundamental type of digestive processes, whose functional regulation in a number of aspects is highly specific. This mechanism is widespread and probably universal.

The actual functioning of the digestive apparatus in higher animals and man comprises three successive and interconnected stages: cavital digestion, membrane digestion, and absorption.

The study of membrane digestion is not only of theoretical interest but of practical importance as well.

A. M. UGOLEV

Laboratory of the Physiology of Nutrition
I. P. Pavlov Institute of Physiology
Academy of Sciences of the USSR
Leningrad, USSR

References

Membrane digestion

Physiology and Pathology of the Small Intestine (Proceedings of the All-Union Conference of Gastroenterologists, Riga, 1970).

Timofeeva, N. M., Izuzitova, N. N., Nadirova, T. Y., and Ugolev, A. M. (1965). Characterization of diges-
Membrane digestion

