Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy

HENRIK ANDERSSON AND RUDOLF JAGENBURG

From the Department of Clinical Nutrition and Clinical Chemistry, University of Göteborg, Göteborg, Sweden

SUMMARY Thirteen patients with ileopathy were studied under metabolic ward conditions, first on a 100-g fat diet and later on a 40-g fat diet. Ten of the patients were studied after three to 27 months on a fat-reduced diet. Ten of the patients had a high urinary oxalate excretion on the high-fat diet compared with a control group. The patients with a faecal fat output of more than 15 g a day showed a reduction in oxalate excretion when the fat intake was decreased and in the follow-up study the oxalate excretion was low in all patients except in one with a remaining steatorrhoea. There was a correlation between urinary oxalate excretion and faecal output of fatty acids. It is postulated that a low intraluminal calcium ion concentration, mainly caused by the high fatty acid content, explains the hyperoxaluria. The low-fat diet, which also reduced the diarrhoea and increased the urinary output, was acceptable to the patients. The diet is recommended for patients with ileopathy in order to reduce the risk of formation of renal calculi.

Hyperoxaluria and nephrolithiasis may occur in patients with ileopathy (Smith, Hofmann, McCall, and Thomas, 1970; Dowling, Rose, and Sutor, 1971; Admirand, Earnest, and Williams, 1971). Abnormalities in the bile salt metabolism (Hofmann, Thomas, Smith, and McCall, 1970; Smith, Fromm, and Hofmann, 1972), a preferential conversion of glyoxylate to oxalate in the liver (Admirand et al., 1971), and an increased absorption of dietary oxalate (Chadwick, Modha, and Dowling, 1973; Stauffer, Humphreys, and Weir, 1973) have been proposed to explain this secondary form of hyperoxaluria. These theories have resulted in different therapeutic applications. A decrease in urinary oxalate after oral taurine has been found in some studies (Dowling et al., 1971; Admirand et al., 1971) but questioned in others (Smith et al., 1972; Chadwick et al., 1973). Cholestyramine has also been shown to reduce the oxalate excretion to normal (Smith et al., 1972; Stauffer et al., 1973). Finally, a low oxalate diet has been proposed by Chadwick et al. (1973).

Andersson, Isaksson, and Sjögren (1974) have shown that reduction of the fat intake in patients with ileopathy results in a decrease in the diarrhoea, steatorrhoea, and faecal loss of water and electrolytes. Urinary samples from the patients studied by these authors under metabolic ward conditions were available and have been used for quantitative determination of oxalate excretion. In the present investigation the effect of the reduced fat diet on the urinary oxalate excretion in these patients will be reported. A hypothesis for the beneficial effect of the fat-reduced diet will also be presented.

Material

The material consists of urine from 13 patients (six women and seven men), mean age 38 years, with ileopathy described earlier in detail (Andersson et al., 1974) (table I). All patients complained of watery bowel evacuations. In patient M 210 distal ileum had been removed at an operation for ileus caused by irradiation damage to the gut. One patient, M 170, had had a resection of the ileum after an accident. The remaining 11 patients had Crohn's disease with ileal involvement, and in nine of them ileal resection had been performed. Two patients, M 158 and M 210, had previously had renal calculi.

The patients had been studied under metabolic ward conditions (Isaksson and Sjögren, 1967). This initial study consisted of eight to 16 days with a daily intake of 100 g fat, followed by 12 to 24 days with a daily intake of 40 g fat. The diets were individually composed.

Received for publication 18 February 1974.
Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Duration of Symptoms (yr)</th>
<th>Length of Small Bowel Resection</th>
<th>Anastomosis</th>
<th>Faecal Fat on 100-g Fat Diet (g/24 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 210</td>
<td>F</td>
<td>63</td>
<td>Ileus</td>
<td>13</td>
<td>Jejunum 55</td>
<td>Ileum-caecum</td>
<td>55</td>
</tr>
<tr>
<td>M 170</td>
<td>M</td>
<td>52</td>
<td>Trauma</td>
<td>6</td>
<td>Jejunum 135</td>
<td>Ileum-caecum</td>
<td>42</td>
</tr>
<tr>
<td>M 209</td>
<td>F</td>
<td>33</td>
<td>Crohn's disease</td>
<td>18</td>
<td>Ileum 125</td>
<td>Ileum-ascending colon</td>
<td>37</td>
</tr>
<tr>
<td>M 191</td>
<td>M</td>
<td>33</td>
<td>Crohn's disease</td>
<td>7</td>
<td>Ileum 140</td>
<td>Ileostomy</td>
<td>29</td>
</tr>
<tr>
<td>M 203</td>
<td>F</td>
<td>61</td>
<td>Crohn's disease</td>
<td>16</td>
<td>Ileum 100</td>
<td>Ileum-transverse colon</td>
<td>28</td>
</tr>
<tr>
<td>M 216</td>
<td>M</td>
<td>34</td>
<td>Crohn's disease</td>
<td>10</td>
<td>Ileum 40</td>
<td>Ileum-transverse colon</td>
<td>22</td>
</tr>
<tr>
<td>M 195</td>
<td>M</td>
<td>19</td>
<td>Crohn's disease</td>
<td>2</td>
<td>Ileum 35</td>
<td>Ileum-transverse colon</td>
<td>19</td>
</tr>
<tr>
<td>M 158</td>
<td>M</td>
<td>61</td>
<td>Crohn's disease</td>
<td>36</td>
<td>Ileum 125</td>
<td>Ileum-transverse colon</td>
<td>13</td>
</tr>
<tr>
<td>M 198</td>
<td>M</td>
<td>27</td>
<td>Crohn's disease</td>
<td>13</td>
<td>Ileum 125</td>
<td>Ileum-transverse colon</td>
<td>11</td>
</tr>
<tr>
<td>M 179</td>
<td>F</td>
<td>38</td>
<td>Crohn's disease</td>
<td>9</td>
<td>Ileum 60</td>
<td>Ileum-transverse colon</td>
<td>9</td>
</tr>
<tr>
<td>M 164</td>
<td>F</td>
<td>27</td>
<td>Crohn's disease</td>
<td>18</td>
<td>Ileum 50</td>
<td>Ileum-caecum</td>
<td>6</td>
</tr>
<tr>
<td>M 211</td>
<td>F</td>
<td>24</td>
<td>Crohn's disease</td>
<td>2</td>
<td>Ileum 35</td>
<td>Ileum-transverse colon</td>
<td>5</td>
</tr>
<tr>
<td>M 185</td>
<td>M</td>
<td>25</td>
<td>Crohn's disease</td>
<td>10</td>
<td>Ileum 160</td>
<td>Ileum-transverse colon</td>
<td>5</td>
</tr>
</tbody>
</table>

Table I Clinical data and faecal fat excretion in the present series of patients

On the 100-g fat diet most patients had steatorrhoea (table I). On the fat-reduced diet there was a reduction in the number of bowel evacuations and a decrease in the faecal content of fat, water, potassium, and sodium (Andersson et al, 1974). Treatment with the fat-reduced diet was continued at home. Three to 27 months later a follow-up study was performed. Ten of the 13 patients were admitted to the metabolic ward (four days) and were given the 40-g fat diet. One of the initial patients had died of intercurrent disease and two patients had been operated upon again and were thus discharged from the follow-up study.

The urines from patients with ileopathy consisted of 111 samples out of the total of 115 samples collected quantitatively in four-day periods during the metabolic studies. Thirty-four samples were collected during the high-fat regime, 67 samples during the initial low-fat study, and 10 samples during the follow-up study.

The control material consisted of one 24-hour collection of urine from each of 13 apparently healthy subjects matched for age and sex.

Methods

Urinary Oxalate
The urine was transferred directly after voiding into flasks containing 5 N hydrochloric acid (10 ml/24 hr). Four-day portions were collected and aliquots were stored at −16 °C until assayed. The oxalate was measured on centrifuged urine thawed at +4 °C overnight by a slight modification of the method of Archer, Dormer, Scowan, and Watts (1957). By using a microsyringe (Agla) at the titration 10 ml of urine was sufficient for the analysis. The titration was performed with 0·1 molar permanganate under continuous stirring in a 10 ml test tube.

The mean recovery of oxalate added to different urine samples was around 80% (range 75-82%). Calcium chloride added to a sample of freshly voided urine did not decrease the recovery of oxalate. When possible (90% of the determinations) duplicate samples were analysed. The difference between the two determinations was 2·4 (1 SD) mg/l at a mean concentration of 40 mg/l.

Other Methods
The methods used for the determination of total fat and fatty acids in faeces, sodium and potassium in faeces, calcium in urine, faeces, and food, and total bile salt in duodenal samples will be reported elsewhere together with the results of these determinations.

The oxalic acid content of the diets have been calculated from food composition tables (Zarembski and Hodgkinson, 1962).

Results

The Urinary Oxalate Excretion
This was 46 ± 25 (mean ± 1 SD) mg/24 hr in the 13 patients when the daily fat intake was 100 g compared with 20 ± 7 mg in the controls (table II). In 10 out of the 13 patients the excretion exceeded 34 mg/24 hr.

Faecal fat excretion was reduced (Andersson et al, 1974) when fat intake was decreased. Of the total faecal fat a mean of 80% (range 33-100%) was comprised of free fatty acids while the content of triglycerides generally was low. A linear positive correlation was found between faecal fatty acid output and urinary oxalate excretion (fig 1, r = 0·70, p < 0·01) as well as between faecal fat output and oxalate excretion (r = 0·68, p < 0·01).
Patients’ 100-g Fat Diet

Table II

<table>
<thead>
<tr>
<th>Group I</th>
<th>100-g Fat Diet</th>
<th>40-g Fat Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Study</td>
<td>Mean Whole Period</td>
<td>Follow-up Study</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean Last Four Days</td>
<td>Mean</td>
</tr>
<tr>
<td>Urinary Oxalate Excretion (mg/24 hr)</td>
<td>Urinary Oxalate Concentration (mg/l)</td>
<td>Oxalate Content of the Diet (mg/24 hr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group II</th>
<th>100-g Fat Diet</th>
<th>40-g Fat Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Study</td>
<td>Mean Whole Period</td>
<td>Follow-up Study</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean Last Four Days</td>
<td>Mean</td>
</tr>
<tr>
<td>Urinary Oxalate Excretion (mg/24 hr)</td>
<td>Urinary Oxalate Concentration (mg/l)</td>
<td>Oxalate Content of the Diet (mg/24 hr)</td>
</tr>
</tbody>
</table>

Table II Urinary oxalate excretion, urinary oxalate concentration, and calculated oxalate intake at different dietary fat levels in 13 patients with ileal disease.

1 Group I, patients with a faecal fat excretion >15 g/24 hr and group II, patients with a fat excretion <15 g/24 hr at a dietary fat intake of 100 g per day.
2 The duration of the study varied from four to 16 (mean 10) days for the different subjects.

Fig 1 Correlation between urinary oxalate excretion and faecal fatty acid output in 13 patients with ileal disease during periods of varying fat intake. ● = 100 g dietary fat; ★ = 40 g dietary fat, initial study; ▲ = 40 g dietary fat, follow-up study.
Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy

Because of this finding the patient material was divided into two main groups (table II). Group I included eight patients with an initial faecal fat excretion exceeding 15 g/24 hr and group II five patients with an excretion less than 15 g/24 hours. In group I the urinary oxalate excretion decreased when the fat intake was reduced from 100 g to 40 g per day in five patients and was essentially unchanged in the remaining three. In the follow-up study the oxalate excretion remained low in patients on the fat-reduced diet except in M 209 who had a daily faecal fat excretion of 14 g. In group II a high oxalate excretion was observed initially in only two of the patients. In these patients no change in the oxalate excretion was observed during the initial study. However, during the follow-up study the daily excretion had decreased to 20 and 11 mg respectively.

The patients had a higher diuresis when they were on the low-fat diet (Andersson et al, 1974) because the diarrhoea was reduced and finally ceased in all but the ileostomy patient. Thus the urinary oxalate concentration was proportionally more reduced than the excretion per unit time. The mean calculated oxalate intake was about the same on the high-fat and fat-reduced diets but there were great variations in the different patients (table II). In patient M 210 the decrease in oxalate intake may have influenced the decrease in urinary oxalate excretion and in patients M 191 and M 195 the fact that the oxalate excretion did not decrease may be explained by the increase in the oxalate content of the diet.

Correlation of urinary oxalate with dietary, urinary, and faecal calcium and phosphorus excretion

There was no correlation between the urinary oxalate excretion and the calcium intake in the patient material.

Urinary excretion of calcium was low in almost all patients (fig 2). An excretion of calcium exceeding 170 mg/24 hr was not connected with hyperoxaluria and generally the patients with the lowest calcium excretion had the highest urinary oxalate excretion.

The mean daily faecal calcium excretion in the 13 patients ranged from 310 to 1300 (group mean 770) mg on the high-fat diet and from 380 to 1590 (group mean 840) mg on the low-fat diet at a constant calcium intake between 200 and 1440 (mean group 810) and 290 and 1900 (group mean 1000) mg/24 hr respectively. One patient, M 185, had a faecal calcium excretion of only 370 (intake 340) and 400 (intake 340) mg respectively on the two

Fig 2. Urinary oxalate excretion in relation to urinary calcium excretion in 13 patients with ileal disease during periods of varying fat intake.

- ○ = 100 g dietary fat
- ★ = 40 g dietary fat, initial study
- ▲ = 40 g dietary fat, follow-up study

Gut: first published as 10.1136/gut.15.5.360 on 1 May 1974. Downloaded from http://gut.bmj.com/ on April 18, 2021 by guest. Protected by copyright.
Discussion

A fat-reduced diet has been found to reduce the diarrhoea in patients with ileal disease and in patients subjected to ileal resection (Booth, McIntyre, and Mollin, 1964; Andersson et al, 1974). The present study shows that a reduction in the daily fat intake from 100 g to 40 g can after a short period of time reduce the urinary oxalate excretion, at least in patients with marked steatorrhoea. The results of the follow-up study indicate that a reduction in the fat intake might after a longer period of time reduce the oxalate excretion even in patients with a normal or almost normal faecal fat excretion.

The decrease in the oxalate excretion occurred when factors known to influence the excretion, such as the oxalate content of the diet (Chadwick et al, 1973) and the dietary calcium intake (Zarembski and Hodgkinson, 1969; Marshall, Cochran, and Hodgkinson, 1972), were relatively constant, and in spite of increased urinary volumes which are known to increase urinary oxalate excretion (Zarembski and Hodgkinson, 1969). The increased diuresis, which was due to a reduction in the stool water on the fat-reduced diet, should further diminish the risk of forming renal calculi.

Increased absorption of dietary oxalate has been shown to be the cause of the hyperoxaluria in patients with ileal dysfunction (Chadwick et al, 1973). The mechanism for the increased absorption in this condition is not known but several explanations have been proposed (Chadwick et al, 1973; Stauffer et al, 1973). It has been shown that an increased oxalate absorption can be provoked by a reduction in the intake of calcium (Zarembski and Hodgkinson, 1969; Marshall et al, 1972). A possible mechanism is that the decrease in the calcium intake results in less calcium being available to form insoluble calcium oxalates in the intestine. Proportionately greater amounts of the ingested oxalic acid will therefore be present as soluble salts which can be absorbed (Marshall et al, 1972). In normal subjects (Marshall et al, 1972) and in patients with renal calculi (Zarembski and Hodgkinson, 1969; Marshall et al, 1972) an increase in the urinary oxalate excretion occurs only when the calcium intake is markedly reduced. As there was no correlation between the oxalate excretion and the calcium intake in our material a low content of calcium in the diet does not seem to be the main cause of the hyperoxaluria.

The good correlation between the urinary oxalate excretion and the faecal fat and fatty acid content and the fact that only the subjects with the lowest urinary calcium excretion had hyperoxaluria favours the hypothesis that a high oxalate absorption is due to a low intraluminal calcium ion concentration caused by the formation of insoluble calcium soaps (Chadwick et al, 1973) (fig 4). A proportionately greater amount of the oxalate will then be in a soluble form.

On the other hand we have not been able to dem-
Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy

\[\text{Absorption} \xleftarrow{\text{Oxalic acid}} \text{Calcium oxalate} \xrightarrow{\text{Ca}^{2+}} \text{Calcium soaps} \xrightarrow{\text{Fatty acids}} \text{Absorption} \]

\[\text{Absorption} \xleftarrow{\text{Oxalic acid}} \text{Calcium oxalate} \xrightarrow{\text{Ca}^{2+}} \text{Calcium soaps} \xrightarrow{\text{Fatty acids}} \text{Absorption} \]

\[\text{Faeces} \]

\[\text{Faeces} \]

Fig 4 Proposed mechanism for the hyperoxaluria in patients with increased faecal excretion of fatty acids.

The oxalate content of the diet might have contributed to a decrease in oxalate excretion in one patient and might explain why there was no decrease in two other patients after the introduction of the fat-reduced diet.

Different treatments have been proposed for the reduction of the hyperoxaluria in patients with ileopathy. The use of taurine has already been mentioned in the introduction. Cholestyramine therapy is not recommended for patients with marked steatorrhoea (Hofmann and Poley, 1969) as it increases the steatorrhoea. The practical application of an oxalate-reduced diet, suggested by Chadwick *et al* (1973), has not yet been evaluated but from a nutritional point of view it is difficult to adhere to such a diet and it is not advisable as most vegetables must be excluded. A fat-reduced diet, as used in the present study, is effective both for reduction of the diarrhoea and of the urinary excretion of oxalate. It is also well tolerated, as six patients previously reported (Andersson, 1973) (three of them included in the present study) have now been on this dietary regime for two to six years.

This work was supported by the Swedish Medical Research Council (project no. 19 X-570).

References

The April 1974 Issue

THE APRIL 1974 ISSUE CONTAINS THE FOLLOWING PAPERS

The control of bile acid pool size: Effect of jejunal resection and phenobarbitone on bile acid metabolism in the rat H. Y. I. MOK, P. M. PERRY, AND R. HERMON DOWLING

Bile salt metabolism in tropical sprue G. BEVAN, R. ENGERT, F. A. KLIPSTEIN, N. MALDONADO, A. RUBULIS, AND M. D. TURNER

Collagen proline hydroxylase activity and 35S sulphate uptake in human liver biopsies J. O'D. MCgee, R. S. PATRICK, MARION C. RODGER, AND CAROLYN M. LUTY

Simplified cholangiography using ioglycamide G. J. S. PARKIN AND H. HERLINGER

Secretion of water and electrolytes into the duodenum in normal subjects and in patients with cirrhosis: The response to secretin and pancreozymin L. A. TURNBERG AND G. GRAHAME

Studies on the nature and significance of connective tissue antibodies in adult coeliac disease and Crohn's disease A. F. N. MAGALHAES, T. J. PETERS, AND WILLIAM F. DOE

The dynamic structure of a flat small intestinal mucosa studied on the explanted rat jejunum C. A. LOEHRY AND R. GRACE

A study of peripheral leucocyte migration in agarose medium in inflammatory bowel disease WITOLD BARTNIK, E. T. SWARBRICK, AND CHRISTOPHER WILLIAMS

Rectal biopsy and precancer in ulcerative colitis H. E. MYRVOLD, N. G. KOCK, AND CHR. ÅHRÉN

Technique
The collection of pancreatic fluid for cytodiagnosis using a duodenoscope A. R. W. HATFIELD, R. WHITTAKER, AND D. D. GIBBS

Progress report Breath-analysis tests in gastroenterology A. NEWMAN

Progress report Iron and the liver MICHAEL BARRY

The British Society of Gastroenterology

Notes and activities

Copies are still available and may be obtained from the PUBLISHING MANAGER,
BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON, WC1H 9JR, price 87p.