Double-blind placebo-controlled study of loperamide (Imodium) in chronic diarrhoea caused by ileocolic disease or resection

P. MAINGUET AND R. FIASSE

From the Department of Gastro-enterology and the Department of Medicine, Cliniques Universitaires St. Pierre, B-3000 Louvain, Belgium

SUMMARY Loperamide (R 18 553) was compared with placebo in a double-blind crossover study of 21 patients with chronic diarrhoea caused by ileocolic disease or resection. Eighteen patients completed the trial. At a median daily dose of 6 mg the new antidiarrhoeal preparation was found to be superior to placebo in controlling chronic diarrhoea. The frequency and weight of stools significantly decreased, the stools became more solid, and carmine transit time was prolonged during loperamide therapy. Loperamide was consistently preferred to placebo by the patients. Gastrointestinal side-effects were few and comparable during both treatment periods.

Loperamide (R 18 553) is a new antidiarrhoeal drug, chemically related to haloperidol and diphenoxylate, which at low doses prolongs intestinal transit time and effectively controls castor oil-induced diarrhoea in animals (Stockbroekx et al., 1973; Niemegeers et al., 1974a; 1974b). On the basis of the results of in vitro studies, loperamide's anti-peristaltic activity has been attributed to a direct effect on the muscles of the intestinal wall, which is mediated by local interaction with both intramural ganglia and acetylcholine release at the nerve endings (Van Nueten et al., 1974).

Animal pharmacological data demonstrate that loperamide is more potent, more specific, and longer-acting that the commonly used antidiarrhoeal, diphenoxylate (Niemegeers et al., 1974a; 1974b), and has a wide safety margin on oral administration (Niemegeers et al., 1974a). Prolonged administration to rats, rabbits, and dogs is well-tolerated, with no apparent toxicity, interference with reproductive processes, or teratogenicity (Marsboom et al., 1974). In human volunteers (Schuermans et al., 1974), loperamide has been shown to be about three times more potent than diphenoxylate and 50 times more potent than codeine in inducing constipation; it is also significantly longer-acting than diphenoxylate (Schuermans et al., 1974). There is complete dissociation of gastrointestinal and CNS effects with this preparation (Niemegeers et al., 1974a; 1974b; Schuermans et al., 1974), and, therefore, loperamide should lack any addictive properties.

Previous clinical trials showed that loperamide induces symptomatic relief in both acute and chronic diarrhoea (De Coster et al., 1972; Demeulenaere et al., 1974; Dom et al., 1974; Verhaegen et al., 1974; Amery et al., 1975; Pelemans and VanTrappen, 1976), but the effect of this treatment on the intestinal transit time has not yet been evaluated.

The aim of this study was to evaluate the effects of loperamide by a double-blind controlled study in patients suffering from severe chronic diarrhoea showing no tendency to spontaneous remission, and to verify its anticipated effect on the intestinal transit time.

Methods

We selected 21 out-patients (11 females and 10 males) ranging in age from 21 to 63 years (median age 43 years) for this study. The aetiology of the diarrhoea in these patients was extensive ileocolic lesions or resections, mostly because of Crohn's disease.

The characteristics of the individual patients, including aetiology of diarrhoea, data pertinent to the resection, and extent of the current illness (based on radiographic evaluation), are shown in Table 1.
The trial ran from December 1972 to February 1974.

Experimental Design
Loperamide was compared with placebo in a double-blind crossover plan. Accordingly, each patient was randomly assigned to treatment with loperamide or placebo and then switched to the alternate medication in the subsequent treatment period.

At the beginning of each treatment period the patient was supplied with a quantity of capsules, containing 2 mg loperamide or placebo, sufficient to meet the maximum need during the proposed four-week trial. The initial daily dose was two capsules. Additional dosage adjustments were made by the patient, increasing or decreasing medication according to his needs until the individual optimum level was achieved. The maximum dose permitted was six capsules per day. Carmine red (500 mg) was administered for measuring the transit time—that is, the period from intake of drug till the first occurrence of reddish stools.

The study was conducted on an ambulatory basis thus avoiding the effect of bed-rest on gastrointestinal transit time; normal occupations and specific diets were also followed. All opiates, diphenoxylate, antispasmodics, and coating agents were withdrawn, but other previously prescribed...

Table 1 Characteristics of Patients

<table>
<thead>
<tr>
<th>Patient's initials</th>
<th>Sex, age (yr)</th>
<th>Aetiology of chronic diarrhoea</th>
<th>Length and type of resections (yr of surgery)</th>
<th>Extent of present illness (x-ray evaluation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>F 41</td>
<td>Crohn's disease (resection and recurrence)</td>
<td>40 cm terminal ileum + ascending colon + 1/2 transverse colon (1960). 25 cm ileum + 10 cm transverse colon (1965)</td>
<td>30 cm ileum</td>
</tr>
<tr>
<td>DM</td>
<td>F 24</td>
<td>Crohn's disease (resection)</td>
<td>50 cm small intestine + caecum + 1/2 ascending colon (1970)</td>
<td>No relapse</td>
</tr>
<tr>
<td>VC</td>
<td>M 43</td>
<td>Crohn's disease</td>
<td>65 cm small intestine + caecum (1960)</td>
<td>30 cm ileum + caecum</td>
</tr>
<tr>
<td>VE</td>
<td>F 52</td>
<td>Recurrence of Crohn's disease</td>
<td>80 cm small intestine + 15 cm caecum (1966)</td>
<td>15 cm ileum</td>
</tr>
<tr>
<td>GI</td>
<td>F 45</td>
<td>Recurrence of Crohn's disease</td>
<td>40 cm + 1/2 colon ascendens + transverse colon</td>
<td>No relapse</td>
</tr>
<tr>
<td>DM</td>
<td>F 32</td>
<td>Crohn's disease</td>
<td>120 cm terminal ileum + caecum (1961)</td>
<td>No relapse</td>
</tr>
<tr>
<td>CV</td>
<td>F 51</td>
<td>Resection of Crohn's disease</td>
<td>70 cm terminal ileum + 1/2 ascending colon (1970)</td>
<td>20 cm ileum</td>
</tr>
<tr>
<td>CA</td>
<td>M 55</td>
<td>Recurrence of Crohn's disease</td>
<td>Ileum (1970)</td>
<td>No relapse</td>
</tr>
<tr>
<td>GG</td>
<td>F 55</td>
<td>Resection of radiation ileitis</td>
<td>50 cm ileum + colon. Right terminal ileum</td>
<td>No relapse</td>
</tr>
<tr>
<td>LM</td>
<td>M 21</td>
<td>Crohn's disease</td>
<td>30 cm terminal ileum + caecum (1969)</td>
<td>15 cm ileum</td>
</tr>
<tr>
<td>CV</td>
<td>M 29</td>
<td>Recurrence of Crohn's disease</td>
<td>1/2 ascending colon + 1/2 transverse colon ileum + 40 cm terminal ileum + 60 cm small intestine (1952, 1972)</td>
<td>20 cm ileum</td>
</tr>
<tr>
<td>MI</td>
<td>M*</td>
<td>Resection of lipophagia granulomatosis</td>
<td>30 cm terminal ileum + caecum (1970)</td>
<td>No abnormalities</td>
</tr>
<tr>
<td>AR</td>
<td>M 47</td>
<td>Recurrence of Crohn's disease</td>
<td>30 cm ileum + part of caecum (1956)</td>
<td>7 cm ileum</td>
</tr>
<tr>
<td>GG</td>
<td>M 43</td>
<td>Recurrence of Crohn's disease</td>
<td>40 cm ileum + ascending colon + 1/3 transverse colon (1967)</td>
<td>20 cm ileum</td>
</tr>
<tr>
<td>RC</td>
<td>F 57</td>
<td>Resection of mesenteric infarction</td>
<td>Distal jejunum + ileum + ascending colon + 1/2 transverse colon (1969)</td>
<td>No abnormalities</td>
</tr>
<tr>
<td>LJ</td>
<td>M 63</td>
<td>Resection of mesenteric infarction</td>
<td>Distal jejunum + ileum + ascending and 1/2 transverse colon (1969)</td>
<td>No abnormalities</td>
</tr>
<tr>
<td>MJ</td>
<td>F 37</td>
<td>Resection of Crohn's disease</td>
<td>180 cm ileum + colectomy (1970)</td>
<td>No relapse</td>
</tr>
<tr>
<td>SM</td>
<td>F 60</td>
<td>Recurrence of Crohn's disease</td>
<td>60 cm ileum (1969)</td>
<td>50 cm ileum</td>
</tr>
<tr>
<td>DA</td>
<td>M 28</td>
<td>Recurrence of Crohn's disease</td>
<td>30 cm ileum + ascending colon + transverse colon (1962, 1965, 1966)</td>
<td>10 cm ileum</td>
</tr>
<tr>
<td>IL</td>
<td>F*</td>
<td>Resection of intestinal obstruction</td>
<td>120 cm ileum + ileostomy (1972)</td>
<td>No abnormalities</td>
</tr>
</tbody>
</table>

* Age unknown.
drugs (chiefly sulphasalazine) were continued throughout the trial, at the same dose.

Patients were instructed to return for evaluation after approximately four weeks or earlier if treatment seemed inadequate. Each patient had been instructed to complete preprinted record forms on which he was asked to record the number of bowel movements daily, the consistency of these motions (liquid, loose, or formed), the daily weight of the stools (at least three consecutive days each week), the carmine transit time (interval between intake and first appearance of carmine red) and any adverse reactions. To that end, a container for measuring the daily faecal output and capsules containing 500 mg official carmine red had been given to the patients together with instructions for their use. Each treatment period concluded with a clinical and laboratory examination.

The investigators completed a follow-up record form for each patient, summarising the data recorded by the patients during each treatment period, calculating their mean daily faecal output from the data of three consecutive days, and indicating the patient's preference for either treatment period, on the basis of the available data.

Statistical analyses were performed on individual median values using the Wilcoxon matched-pairs signed-ranks test (Siegel, 1956). This approach was deemed the most suitable for the evaluation of paired observations with unequal distribution of the data. Patients' preferences and adverse experiences were analysed by the binomial test.

Results

Eighteen of the original 21 patients completed the trial. Three were withdrawn because of failure to co-operate. Five patients took part twice in the study; only data from the first participation were evaluated, although those from the other participation proved similar.

Table 2 Comparison of loperamide versus placebo

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of patients with complete information for both periods (max. 18)</th>
<th>Placebo versus loperamide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Median values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of periods (days)</td>
<td>18</td>
<td>16:5</td>
</tr>
<tr>
<td>Median daily no. capsules taken</td>
<td>18</td>
<td>4:5</td>
</tr>
<tr>
<td>Median daily no. liquid motions</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Median daily no. uniformed motions (liquid + loose)</td>
<td>16</td>
<td>4:5</td>
</tr>
<tr>
<td>Median weight of stools (in grams)</td>
<td>13</td>
<td>800</td>
</tr>
<tr>
<td>Median carmine transit time (h) 1 day</td>
<td>14</td>
<td>2:25</td>
</tr>
<tr>
<td>Patients' preferences (18 patients)</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

*Wilcoxon matched-pairs signed-ranks test (one-tailed probability).
†Binomial test (one-tailed probability).

No sequential effect was demonstrated between treatment periods for any parameter considered (p > 0.05).

Table 2 presents the results of the trial. The number of evaluated pairs (maximum of 18) is indicated because for a few patients complete information was not available for some parameters in both treatment periods. Whereas the median duration of all loperamide treatment periods was 37 days (several patients delayed the fourth-week evaluation as they were satisfied with the treatment and had not yet run out of their supply), it was only 16:5 days with placebo. This difference was statistically significant (p < 0.001).

The frequency, consistency, and weight of the stools were uniformly superior during loperamide treatment as compared with the placebo treatment (p < 0.001 for all parameters). Fewer loperamide than placebo capsules (median of three versus 4:5) were consumed each day (p < 0.001). The median dose of loperamide was therefore 6 mg. Carmine transit time was measured after a median duration of treatment of nine days with placebo and 21 days in the loperamide group; it proved significantly longer during administration of loperamide (p < 0.001). Every patient's global appreciation of all parameters favoured the loperamide treatment period (p < 0.001).

Eight patients reported side-effects with loperamide (nausea, vomiting, abdominal pain, distension) and an equal number of subjects experienced the same complaints during the placebo period (Table 3). There was no significant difference between the two periods (p > 0.05).

Discussion

The efficacy of loperamide in chronic diarrhoea has been demonstrated by previous studies (De Coster et al., 1972; Demeulenaere et al., 1974; Verhaegen et al., 1974).
The entire study group described here suffered from severe chronic diarrhoea caused exclusively by organic disorders, without any tendency to spontaneous remission. In spite of the small sample size (which was limited by stringent selection criteria), alleviation of diarrhoea was more effective with loperamide than with placebo. For all parameters of antidiarhoeal efficacy evaluated (duration of treatment period, number of capsules taken, frequency, consistency and weight of stools, carmine transit time) a median dose of 6 mg loperamide proved significantly better than placebo. Of the three objective criteria considered—that is, daily number of stools, weight of stools, carmine transit time—transit time is obviously the least sensitive indicator of the drug's effectiveness as only marked changes will reveal significant differences. It should be noted that in all but one case, the improvements observed in these three parameters appeared concurrently.

No clearly drug-related side-effects occurred. It is likely that the adverse reactions reported are all associated with the disease state inasmuch as their incidence did not differ with either treatment regimen.

The shortening of transit time in patients with ileal resection or non-operated regional enteritis as compared with that of controls has been documented by Meilho and Kern (1968) using another dye method. Shortened transit time may also be an important feature of regional enteritis, however (Kalser et al., 1960; Wright and Tilson, 1971). The majority of our patients (15 of 18) had undergone intestinal resections. One of the most important causes of diarrhoea in such patients is the reduction in transit time. This reduction is related primarily to the extent of the resection and to possible ablation of the ileocaecal valve; these, in turn, probably result in bile acid and fatty acid catharsis, further shortening the transit time. In our group of patients, the effect of loperamide is probably caused by this action on the transit time, previously demonstrated as significant in both animal and human subjects (Niemeggers et al., 1974b; Schuermans et al., 1974). As loperamide considerably prolonged transit time in this study, too, the drug should prove to be particularly useful in patients with intestinal resections or with extensive regional enteritis.

References

Stockbroeks, R. A., Vandenberk, J., Van Heertum, A. H. M. T., van Laar, G. M. L. W., Van der Aa, M. J. M. C., Van
Double-blind placebo-controlled study of loperamide (Imodium) in chronic diarrhoea

The June 1977 Issue

THE JUNE 1977 ISSUE CONTAINS THE FOLLOWING PAPERS

Effect of the prostaglandin precursor, arachidonic acid, on histamine stimulated gastric secretion in the conscious dog, and observations on the effect of inhibiting endogenous prostaglandin synthesis M. E. Conolly, P. R. Bieck, N. A. Payne, B. Adkins, and J. A. Oates

Nocturnal metiamide treatment in the management of healed duodenal ulceration M. H. Thompson, C. W. Venables, P. A. Smith, and W. Walker

Calcium stimulation of gastrin and gastric acid secretion: effect of small doses of calcium carbonate J. Behar, M. Hitchings, and R. D. Smyth

Post-vagotomy insulin test: improved predictability of ulcer recurrence after corrections for height and collection errors N. K. Maybury, R. G. Faber, and M. Hobley

Lymphocyte populations in liver biopsy specimens from patients with chronic liver disease J. Sanchez-Tapias, H. C. Thomas, and S. Sherlock

Hepatic damage associated with mineral oil deposits R. W. Blewitt, K. Bradbury, M. J. Greenall, and Heather Burrow

Jejunal mucosal gamma glutamyl transferase activity in coeliac disease M. J. Fairman, B. B. Scott, C. Toothill, and M. S. Losowsky

Anal pressure studies in spinal patients I. C. Wheatley, K. J. Hardy, and J. Dent

Progress report Oral ulceration and Behçet's syndrome Thomas Lehner

Notes and activities

Books

Copies are still available and may be obtained from the PUBLISHING MANAGER,
BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, LONDON, WC1H 9JR, price £2.75, including postage