Diurnal serum levels of primary conjugated bile acids
Assessment by specific radioimmunoassays for conjugates of cholic and chenodeoxycholic acid

S. W. SCHALM2, N. F. LaRUSSO3, A. F. HOFMANN, N. E. HOFFMAN4, G. P. VAN BERGE-HENEGOUWEN5, AND M. G. KORMAN6

From the Gastroenterology Unit, Mayo Clinic, Rochester, Minnesota 55901, USA

SUMMARY The serum levels of conjugates of chenodeoxycholic acid (chenyl conjugates) and of cholic acid (cholyl conjugates) were determined by specific radioimmunoassays during a 24-hour period, which included three liquid meals and an overnight fast, in five healthy volunteers, five patients with previous cholecystectomy, five patients with documented bile acid malabsorption because of ileal resection, and four pregnant women. In healthy subjects, fasting-state levels of chenyl conjugates, when compared with those of cholyl conjugates, were higher; postprandially, levels of chenyl conjugates rose to a peak sooner (30 minutes vs 60 minutes) and to higher levels ($5.2 \pm 1.3 \mu M$ vs $2.0 \pm 0.5 \mu M$, $M \pm SE$). In cholecystectomised patients, the integrated areas under the curve for both bile acids were similar to those of the healthy controls, but postprandial peaks were less marked. In patients with bile acid malabsorption, postprandial rises of chenyl conjugates were lower but remained relatively constant throughout the day, whereas cholyl conjugate levels diminished progressively with each successive meal, consistent with depletion of the cholyl, but not the chenyl, pool. In three of four pregnant women, the postprandial rise of chenyl conjugates was disproportionately less compared with that of healthy controls. These results confirm the dynamic complexity of serum bile acid levels in man and indicate that the major circulating primary bile acids are chenyl conjugates. They support previous proposals that jejunal absorption of chenyl conjugates is important in the normal enterohepatic circulation of bile acids; and they suggest an abnormality in the enterohepatic circulation in pregnancy.

1Supported in part by a research grant (AM 16770) from the National Institutes of Health and by grants-in-aid from the Share Foundation, Mead Johnson and Company, and Eli Lilly and Company.

2Eli Lilly Fellow. Present address: Interne Geneeskunde II, Academisch Ziekenhuis, Rotterdam, The Netherlands.

3Dr LaRusso was an NIH postdoctoral trainee under Grant AM 5259.

4Dr Hoffman was a Fulbright-Hays Fellow. Present address: Department of Medicine, University of Texas at Houston, Houston, Texas.

5Dr van Berge-Henegouwen was a NATO Research Fellow of the Netherlands Organization for Pure Research. Present address: Department of Medicine, St Radboud Hospital, Nijmegen, The Netherlands.

6Eli Lilly Fellow. Present address: Department of Medicine, Monash University, Prince Henry’s Hospital, St Kilda Road, Melbourne, Victoria, Australia.

Address for reprint requests: Dr Alan F. Hofmann, Department of Medicine, University of California, San Diego, University Hospital, 225 West Dickinson Street, San Diego, CA 92103, USA.

Received for publication 26 June 1978

We have recently developed sensitive and accurate radioimmunoassays for conjugates of cholic acid (cholyl conjugates) (Simmonds et al., 1973) and chenodeoxycholic acid (chenyl conjugates) (Schalm et al., 1977). Other research groups have also developed successful radioimmunoassays for cholyl conjugates (Murphy et al., 1974; van den Berg et al., 1976; Demers and Hepner, 1976; Roda et al., in press; Spenney et al., 1977) and for chenyl conjugates (Roda et al., in press; Murphy et al., 1976; Spenney et al., 1977). The radioimmunoassay for cholyl conjugates was subsequently used to measure the response of this class of bile acids to meals and overnight fasting in healthy subjects, as well as patients with bile acid malabsorption due to ileal resection and patients with cholecystectomy (LaRusso et al., 1974). We observed that the level of cholyl conjugates rose after each meal and fell during overnight fasting. In patients with bile acid malabsorption, the postprandial increases were smaller and decreased with each successive meal.
These results suggested that the level of serum bile acids was largely determined by intestinal absorption. To prove this, we carried out a series of experiments which supported the hypothesis that the serum level of any bile acid reflected spillover of that bile acid returning from the intestine, and, further, that hepatic (first-pass) clearance of any bile acid was relatively constant during fasting and digestion (LaRusso et al., 1978). As, based on animal studies, the hepatic clearance of chenyl conjugates is less efficient than that of cholylic conjugates (Hoffman et al., 1975a, b; Reichen and Paumgartner, 1976), fasting serum bile acids should be enriched in chenic acid, and this was found to be the case by radio-immunoassay (Schalm et al., 1977).

In this paper, we report values for chenyl conjugates in the samples obtained from the healthy volunteers, the cholecystectomy patients, and the patients with bile acid malabsorption because of ileal resection for whom we had previously reported levels of cholylic conjugates (LaRusso et al., 1974). The aim of these studies was to determine whether there were differences in enterohepatic circulatory dynamics of the two primary bile acids; in addition, we thought that such experiments might provide new, albeit indirect, information on the importance of jejunal absorption of chenyl conjugates. We also defined enterohepatic circulatory dynamics in four pregnant women, since little information is available on bile acid metabolism in pregnancy, and measurement of blood levels is simple and safe.

Methods

Nineteen adult volunteers were studied after informed consent was obtained: five healthy volunteers; five patients who had undergone cholecystectomy at least six months before the study; five patients with ileal resection and documented bile acid malabsorption; and four pregnant women, one six months pregnant, one seven months, one eight months, and one nine months. The groups were not well matched for age, sex, and weight, but all had unremarkable physical examinations and normal results on conventional liver tests (serum bilirubin, alkaline phosphatase, and glutamic oxalacetic transaminase values). In addition, a one-hour sulphobromophthalein retention test was carried out and was normal in the non-pregnant subjects. No subject had received any medication for at least one week before the study. Details about the first three groups of patients have been published earlier (LaRusso et al., 1974).

On the morning of the study, a 21-gauge scalp vein needle was inserted into a large antecubital vein; the needle remained in place for the duration of the 24-hour study and was kept patent by periodic irrigation with a dilute solution of heparin. Two fasting-state venous blood samples were taken. Equicaloric (30 kcal/kg body weight) liquid meals (40% protein, 20% fat, 40% carbohydrates) were given at 0800, 1230, and 1730. Venous blood was taken at 0830 and at regular intervals (15 or 20 minutes during the day and one or two hours during the night).

Venous blood samples were allowed to clot, and, after centrifugation, the separated serum was frozen for subsequent analysis. The concentration of conjugates of chenic acid was determined by radio-immunoassay as previously described (Schalm et al., 1977). Our assay has a coefficient of variation of less than 10% for values of 1 mol/l or more and of less than 16%, for values below 1 mol/l. The assay measures predominantly conjugates of chenic acid; unconjugated chenic acid and ursodeoxycholylglycine show that 10% cross-reactivity; the contribution of these bile acids to the chenodeoxycholic values should be negligible, as their serum concentration in man is considered to be considerably below that of chenodeoxycholic acid.

Significance was tested by Student's t test. The integrated 'area under the curve' was calculated by a simple computer programme, which calculated the area under the curve of the time course of the serum levels (we acknowledge the advice of Dr Paul J. Thomas). The protocol was approved by the Mayo Clinic Human Studies Committee in July 1974.

Results

HEALTHY SUBJECTS (Tables 1 and 2, Fig. 1)

The concentration of chenyl conjugates had risen sharply by 30 minutes after each test meal; the maximal postprandial increase for each patient was between 250 and 1400% (mean 600%) above fasting-state values (mean 0.87 M mol/l, range 0-5-1.43). After the maximum, serum chenyl conjugate concentrations decreased rapidly for one hour, then levelled off or showed a small rise, followed by another decrease to approximately twice baseline values four hours after the meal (Fig. 1). Serum concentrations, fasting-state levels, and maximal postprandial peaks of chenyl conjugates were about twice as high as those of cholylic conjugates; the integrated area under the serum concentration curve was 3-5 times that of cholylic conjugates. The maximal postprandial peak of chenyl conjugates occurred about 30 minutes earlier than that of cholylic conjugates (Fig. 1).

Chenyl conjugates comprised 76% of the primary bile acids in serum over the 24-hour period; their proportion varied slightly during digestion, in-
Table 1 Fasting-state serum levels and 'area under curve' (AUC) of primary bile acid conjugates (M ± SD) during 24-hour study period

<table>
<thead>
<tr>
<th>Group</th>
<th>Fasting-state levels (μmol/l)</th>
<th>Daily AUC (h-μmol/l)</th>
<th>Postprandial AUC *(h-μmol/l)</th>
<th>Meal 1</th>
<th>Meal 2</th>
<th>Meal 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chn-conj</td>
<td>chl-conj</td>
<td>chn-conj</td>
<td>chl-conj</td>
<td>chn-conj</td>
<td>chl-conj</td>
</tr>
<tr>
<td>Normals (n = 5)</td>
<td>0-87</td>
<td>0-45</td>
<td>+16-8</td>
<td>±4-3</td>
<td>16-9</td>
<td>5-64</td>
</tr>
<tr>
<td></td>
<td>±0-42</td>
<td>±0-24</td>
<td></td>
<td></td>
<td>±4-9</td>
<td>±2-61</td>
</tr>
<tr>
<td>Cholecystectomy (n = 5)</td>
<td>1-30†</td>
<td>0-33</td>
<td>49-2</td>
<td>14-8</td>
<td>15-0</td>
<td>3-95</td>
</tr>
<tr>
<td></td>
<td>±0-34</td>
<td>±0-12</td>
<td>±13-0</td>
<td>±4-2</td>
<td>±3-41</td>
<td>±1-03</td>
</tr>
<tr>
<td>Ileal resection (n = 5)</td>
<td>1-30</td>
<td>0-22</td>
<td>41-1</td>
<td>5-4†</td>
<td>10-0†</td>
<td>2-01†</td>
</tr>
<tr>
<td></td>
<td>±0-66</td>
<td>±0-02</td>
<td>±3-5</td>
<td>±0-5</td>
<td>±3-12</td>
<td>±0-24</td>
</tr>
<tr>
<td>Pregnancy (n = 4)</td>
<td>0-60</td>
<td>0-45</td>
<td>29-4†</td>
<td>16-2</td>
<td>8-9</td>
<td>5-95</td>
</tr>
<tr>
<td></td>
<td>±0-14</td>
<td>±0-25</td>
<td>±16-9</td>
<td>±5-0</td>
<td>±6-0</td>
<td>±1-30</td>
</tr>
</tbody>
</table>

Figures in parentheses represent number of subjects.

* AUC for the three hours after each meal.
† Different from normal, P < 0.05, by Wilcoxon rank sum test for unpaired replicates.

Table 2 Maximum postprandial level of primary bile acid conjugates (M ± SD)

<table>
<thead>
<tr>
<th>Meal</th>
<th>chn-conj</th>
<th>chl-conj</th>
<th>chn-conj</th>
<th>chl-conj</th>
<th>chn-conj</th>
<th>chl-conj</th>
<th>chn-conj</th>
<th>chl-conj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td>4-98 ± 1-27</td>
<td>2-10 ± 0-48</td>
<td>5-25 ± 1-98</td>
<td>1-56 ± 0-41</td>
<td>4-28 ± 1-07</td>
<td>1-87 ± 0-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal 2</td>
<td>4-79 ± 0-71</td>
<td>1-12 ± 0-22</td>
<td>4-46 ± 1-28</td>
<td>0-85 ± 0-23</td>
<td>4-17 ± 1-79</td>
<td>0-83 ± 0-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal 3</td>
<td>2-56* ± 0-72</td>
<td>0-72 ± 0-13</td>
<td>2-91* ± 0-86</td>
<td>0-39† ± 0-04</td>
<td>2-46* ± 0-44</td>
<td>0-23† ± 0-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.01 by Wilcoxon rank sum test for unpaired replicates.
† P < 0.05.

![Fig. 1 Profile of chenyl conjugates and cholyl conjugates in serum during 24 hours, including ingestion of three liquid test meals, five representative healthy subjects.](http://gut.bmj.com/).
Diurnal serum levels of primary conjugated bile acids

Fig. 2 Profile of chenyl conjugates and cholyl conjugates in serum during 24 hours, including ingestion of three liquid test meals, in five subjects at least six months after cholecystectomy.

creasing when, for example, the postprandial rise of chenyl conjugates preceded that of cholyl conjugates. They tended to fall during the latter hours of the overnight fast.

CHOLECYSTECTOMY (Tables 1 and 2, Fig. 2)
In these patients, the serum concentration of chenyl conjugates also increased sharply after each test meal; the maximal postprandial increase was similar in value to that of healthy subjects. The relative increase (mean 440%) was lower than that of healthy subjects mainly because of the higher fasting-state values in cholecystectomised patients (mean 1.3 μmol/l, range 0.75–1.61). The area under the serum concentration curve did not differ from that in the healthy control subjects. The interval between meal
ingestion and the maximum was not longer than that observed in healthy subjects. After the maximum, serum chenyl conjugate concentrations decreased more rapidly than normal; a small secondary peak was observed in the majority of cases. Levels then returned to approximately baseline (1·5 μmol/l, range 0·9-2·5) four hours after the meal (Fig. 2).

Fasting-state levels and maximal postprandial peaks of chenyl conjugates were about four times as high as those of cholyl conjugates. The ratio of integrated areas (chenyl) under the serum concentration curve (3·3) was comparable with that of healthy subjects. The maximal postprandial peak of chenyl conjugates occurred about one hour earlier than that of cholyl conjugates (Fig. 2).

Chenyl conjugates comprised 75% of the total serum primary bile acid conjugates over the 24-hour period; the proportion was similar to that in health during the digestive period and during the fasting period.

ILEAL RESECTION (Tables 1 and 2, Fig. 3)

In this group, chenyl conjugate concentrations peaked after a meal in only four out of 15 instances. The maximal postprandial increase was small (110-420; mean 240%) compared to healthy subjects due both to higher fasting-rate values (mean 1·3 μmol/l, range 0·81-2·20) and to the lower absolute increase. The interval between meal ingestion and the maximum was much longer (2·9 hours) than in health. After the maximum, little decline was observed, except during the fasting period (15-24 hours) (Fig. 3).

The 0-3 hour postprandial level was significantly lower for each meal. However, the area under the serum concentration curve for the entire 24-hour period was not statistically smaller (0·05 < p < 0·10), probably because of the absence of troughs.

Fasting-state levels and integrated area under the serum concentration curve were about seven times those of cholyl conjugates; as in healthy subjects, the maximal postprandial peak of chenyl conjugates occurred earlier than that of cholyl conjugates (Fig. 3).

Cholyl conjugates comprised only 13% of the total serum primary bile acid conjugates over the 24-hour period; this proportion was lower than in health both during the digestive and fasting period (Fig. 3).

PREGNANCY (Tables 1 and 2, Fig. 4)

The postprandial increase in the level of chenyl conjugates was less in three of the four subjects than any of the normal controls. The only subject having a normal increase in the level of chenyl

![Fig. 4 Profile of chenyl conjugates in serum during 24 hours, including ingestion of three liquid test meals, in four pregnant women.](http://gut.bmj.com/firstpublished/19781110/10100674)
Meals

Fig. 5 Profile of cholyl conjugates in serum during 24 hours, including ingestion of three liquid test meals, in four pregnant women.

conjugates was in her ninth month of pregnancy. The maximal postprandial increase for each patient was between 220 and 450% (mean 320%); this was lower than in nonpregnant healthy subjects. After the maximum, serum cholyl conjugate levels declined more rapidly than normal to baseline, followed by a small secondary peak. During the night, cholyl conjugate values were lower than normal (Fig. 4). Fasting-state levels, maximal postprandial peaks, and area under the serum concentration curve were less than twice those of cholyl conjugates (Fig. 5). As in normal subjects, the postprandial peaks occurred earlier than those of cholyl conjugates (Fig. 5).

The mean percentage of cholyl conjugates of the total serum concentration of primary bile acid conjugates was lower (61%) than that of the healthy controls (76%) over the 24-hour period, both during the digestive and fasting period.

Discussion

These results indicate that the two major classes of bile acids, cholyl conjugates and cholyl conjugates, have different enterohepatic circulatory dynamics. The rhythm of the enterohepatic circulation is determined by eating, but the response to a standard meal of the individual bile acid classes differs; cholyl conjugates rise sooner, achieve higher levels, and descend more slowly. The data suggest that the pool of cholyl conjugates has a daily recycling frequency significantly greater than that of the pool of cholyl conjugates, but the recycling frequency cannot be calculated from the present studies or our previous studies as the relative first-pass clearances of cholyl conjugates and cholyl conjugates are not known.

The more rapid postprandial increase is probably attributable to preferential jejunal absorption of cholyl conjugates. However, even though preferential jejunal absorption might cause earlier increases of cholyl conjugates, it would not explain the much greater postprandial rise of cholyl conjugates when compared with cholyl conjugates. This is most reasonably explained by a lower fractional hepatic clearance of cholyl conjugates, causing a greater spillover into the plasma compartment.

The prolonged rise of cholyl conjugates is to be explained by continuing jejunal absorption at the end of the digestive period. It is well established that nearly half of the hepatic bile secreted during fasting bypasses the gallbladder in man (von Bergmann et al., 1976; van Berge Henegouwen and Hofmann, 1976), and, as soon as this bile enters the small intestine, some of it cholyl conjugates will be absorbed. Cholyl conjugates will not be absorbed to a similar extent because of the slowing of intestinal transit, although the decrease in the proportion of cholyl conjugates occurring late in overnight fasting might indicate that cholyl conjugates require several hours to reach the distal ileum where they are then actively absorbed.

After this work had been completed, similar studies were reported by Hepner and Demers (1977) and by Barbara et al. (1976). The results of
these groups are in good agreement with our own work, although the postprandial increase in chenyl conjugates observed by us was somewhat greater than that observed by Hepner and Demers (1977), whose assay measured only glycine conjugates. Angelin et al. (1976) have recently published studies showing evidence for jejunal absorption of chenyl conjugates in man.

Cholecystectomy

We noted previously for cholyl conjugates that the major change in the diurnal pattern was smoothing of the postprandial response (LaRusso et al., 1974). As the area under the curve was similar to that of the healthy controls, we inferred that bile acid secretion during meals was essentially normal, despite a report to the contrary (Malagelada et al., 1973); however, normal or near normal bile acid output after cholecystectomy has recently been documented in a careful study of Shaffer and Small (1977). The results for chenyl conjugates lend additional support to our view. The postprandial increase in chenyl conjugates did not differ from that of the healthy subjects. Detailed interpretation of the diurnal pattern in cholecystectomised patients is impossible because the anatomical location of the bile acid pool is not known, nor has the pattern of bile acid secretion into the intestine been measured under physiological conditions in cholecystectomised patients.

Bile acid malabsorption after ileal resection

Loss of the site of active absorption of bile acids causes a striking change in their circulation with a progressive depletion of the cholic acid pool throughout the day, so that it is nearly dissipated by the evening meal (LaRusso et al., 1974). It is restored to a considerable extent during overnight fasting.

In Fig. 6 we have plotted the time course of the molar fraction (proportion) of chenyl conjugates in the total primary bile acid conjugates for the healthy controls and the patients with ileal resection. Ileal absorption causes a postprandial enrichment in chenyl conjugates. Loss of the ileum leads to progressive depletion of chenyl conjugates signalled by a progressive enrichment in chenyl conjugates.

These data suggest the importance of the jejunal in conserving the lipophilic chenyl conjugates which can be absorbed by passive nonionic diffusion based on perfusion studies (Hislop et al., 1967) or analysis of fasting-state jejunal contents (Angelin et al., 1976), as well as in vitro studies (Schiff et al., 1972). Since chenylglycine should be absorbed far better than chenyltaurine, an explanation is also provided for the marked increase in the glycine/taurine ratio of bile acids in patients with ileal resection (McLeod and Wiggins, 1968; Garbutt et al., 1969). What is remarkable is the constancy of levels of chenyl conjugates throughout the day. This would suggest that little gallbladder filling occurred. We speculate that the loss of enteroglucagon or another hormone from the ileum might be responsible for failure of the sphincter of Oddi to contract at the end of the digestive period. This could explain why most of the hepatic bile which is secreted bypasses the gallbladder.

Fig. 6 *Time course of proportion of chenyl conjugates in primary bile acid conjugates in serum during 24 hours, including ingestion of three liquid test meals, in five representative healthy subjects and five patients with ileal resection and documented bile acid malabsorption.*

Gut: first published as 10.1136/gut.19.11.1006 on 1 November 1978. Downloaded from http://gut.bmj.com/ on October 28, 2023 by guest. Protected by copyright.
Diurnal serum levels of primary conjugated bile acids

PREGNANCY

The pattern of cholyl conjugates, not reported previously, did not differ from that of the healthy controls, consistent with normal gallbladder function and normal intestinal absorption and hepatic uptake. The strikingly smaller postprandial increase in chenyl conjugates in the three women at six, seven, and eight months of pregnancy is noteworthy. A possible explanation is that pregnancy causes a striking inhibition of chenic acid synthesis, as has been observed in the baboon (McSherry et al., 1977), causing a selective shrinkage of the chenic acid pool with a consequent decrease in secretion. Other explanations are also possible, and, clearly, detailed studies of chenic acid metabolism in pregnancy are warranted. These are quite feasible as 3H- and 13C-labelled chenodeoxycholic acid are available (Cowen et al., 1976; Tserng and Klein, 1977) and both labels should give valid results when used for isotope dilution studies of bile acid kinetics in man (Balistreri et al., 1975).

SERUM BILE ACID PROFILES

The data presented here indicate the enormous complexity of serum bile acids. The pattern at any moment represents the instantaneous spillover of all the bile acids returning to the liver. Each bile acid has its characteristic spillover rate, which remains relatively constant throughout the day. Thus, the pattern of serum bile acids should reflect the pattern of biliary bile acids but with a systematic distortion. Total serum bile acids reflect, not only hepatic spillover of the major conjugated bile acids in bile, but in addition the variety of secondary bile acids which are absorbed from the ileum and colon. If any of these are poorly cleared by the liver, they will be proportionately increased in the peripheral plasma compartment. When values for hepatic clearance are known for each bile acid, it should be possible to use serum bile acid measurements to monitor intestinal events. Such measurements might prove useful for characterising intestinal absorptive function.

Our work is incomplete in that we have not characterised the enterohepatic circulatory dynamics of the other four major bile acid species in man—deoxycholic, ursodeoxycholic, lithocholic, and sulpholithocholic. Demers and Hepner (1977) have recently characterised the behaviour of the glycine conjugates of deoxycholic and sulpho-lithocholic acid during a 24-hour period.

Our work confirms our hypothesis that both the level and the pattern of serum bile acids are determined by both intestinal and hepatic factors. There is increasing evidence that measurement of serum bile acid levels does provide clinically useful information (Hofmann et al., 1974; Korman et al., 1974; Fausa and Gjone, 1976; Osuga et al., 1977), but mechanistic interpretation of raised levels in patients with liver disease will require even more detailed studies of the enterohepatic circulation.

References

S. W. Schalm et al.

