Relationship between endotoxaemia and protein concentration of ascites in cirrhotic patients

K. TARAO¹, T. MOROI, Y. NAGAKURA, T. IKEUCHI, T. SUYAMA, O. ENDO, AND K. FUKUSHIMA

From the First Department of Medicine, Yokohama City University School of Medicine, Yokohama, Japan

SUMMARY Endotoxaemia was investigated by the Limulus assay in 42 cirrhotic patients with ascites and in 33 without ascites. The incidence of endotoxaemia in the former group (59·5%) was significantly (p < 0·05) higher than in the latter (36·4%). Correlation between endotoxaemia and specific gravity and concentrations of total protein, albumin, and globulin in ascitic fluid was studied in the group with ascites. The specific gravity of ascites in 25 patients with endotoxaemia was significantly greater than that in 17 patients without endotoxaemia (p < 0·01). The concentration of total protein in patients with endotoxaemia (13·95 ± 7·18 g/l, mean ± SD) was nearly twice as high (p < 0·01) as in patients without endotoxaemia (7·49 ± 3·60 g/l). The protein content of those who showed reactions greater or equal to 2(+) in the Limulus assay (16·78 ± 7·14 g/l) was significantly (p < 0·05) higher than in those with 1(+) reaction (11·26 ± 6·33 g/l). Moreover, the concentration of albumin in patients with endotoxaemia (7·68 ± 4·60 g/l) was more than twice that of the patients without endotoxaemia (3·39 ± 1·58 g/l, p < 0·01). On the other hand, globulin concentration in patients with endotoxaemia was 1·6 times that of patients without endotoxaemia (p < 0·01). Similar differences were noted between endotoxaemic and non-endotoxaemic patients in the ascites-to-serum ratio in protein, albumin, and globulin. These results suggest that in liver cirrhosis endotoxaemia may cause an increase in protein concentrations in ascitic fluid, and that it may be a precipitating factor in the formation of ascites.

Among the various biological actions of endotoxin, an accelerating effect on capillary permeability to macromolecules was first demonstrated by Chien et al. (1963) in experimental animals. Endotoxin was also shown experimentally to cause portal hypertension by constriction of hepatic venules (MacLean et al., 1956; Weil et al., 1956; Chien et al., 1964). Moreover, with regard to hepatic venous outflow block, it is known clinically that ascitic fluid resulting from hepatic venous obstruction such as is found in the Budd-Chiari syndrome is characterised by a high protein content (Gibson, 1960). It is also well established that endotoxaemia is encountered frequently in cirrhotic patients with ascites (Liehr et al., 1975; Clemente et al., 1977; Tarao et al., 1977). If the above mentioned effects of endotoxin are present in cirrhotic patients with ascites, the ascitic fluid of patients with endotoxaemia should contain more protein than in those without endotoxaemia. The present study was designed to investigate the relationship between endotoxaemia and the specific gravity—protein content as well as content of albumin—of the ascitic fluid of cirrhotic patients.

Methods

Subjects investigated comprised 75 cirrhotic patients, 42 (36 males, six females) with ascites and 33 (23 males, 10 females), without ascites. They were inpatients at the Yokohama City University Hospital between 8 September 1976 and 3 March 1978. Diagnosis was made by biopsy histology characterised by complete bridging of the portal areas with fibrous bands and disorganisation of the lobules. Their ages ranged from 37 to 68 years with a mean of 51 years in the former group and from 35 to 70 years with a mean of 53 years in the latter group. The cirrhotic group with ascites comprised alcoholic

¹Present address: Dr Kazuo Tarao, Northwestern Apartments, Apartment 728, 1725 Orrington Avenue, Evanston, Illinois 60201, USA.

Received for publication 9 October 1978
cirrhosis (20 patients), post-hepatic cirrhosis (eight),
cryptogenic cirrhosis (13), and primary biliary cirrhosis (one). The cirrhotic group without ascites
consisted of alcoholic cirrhosis (17), post-hepatic cirrhosis (five) and cryptogenic cirrhosis (11).
HBsAg was detectable in the serum of 10 patients in
the former and six in the latter group by radio-
immunoassay. At the time of investigation, 21 of
42 in the former group and seven of 33 in the latter
group were on diuretics. As to the other medications,
no other drugs which would influence the study
were administered.

Liver function study included: total protein
(estimated by the method of Gornall et al. (1949),
normal 68 to 80 g/l), serum alkaline phosphatase
(INU), serum glutamic oxalacetic transaminase
(INU), thymol turbidity test (TTT, Japanese
standard method, 0 to 5-5 Kunel U), total and
prompt-reacting bilirubin (estimated by the modified
method of Michaëlsen et al. (1965), total bilirubin
5 to 17 μmol/l), and bromsulphthalein retention
(BSP, less than 5% in 45 minutes). Alphaetoprotein
was determined in all patients by radioimmunoassay
and those whose condition was complicated by
hepatoma were excluded. Total protein in the
ascitic fluid was determined by the biuret method.
Disc electrophoresis (Ornstein, 1964) was used for
electrophoretic analysis of ascites.

Blood-samples were obtained under aseptic
conditions with pyrogen-free syringes. Endotoxin-
like activity was measured immediately after
sampling by the Limulus assay as described by
Levin et al. (1970). All glassware was rendered
pyrogen-free by heating at 175°C for three hours
(Yin et al., 1972). All procedures were carried out
under sterile conditions. The amoebocyte lysate
used in Limulus assay was provided by DiFco
Laboratories. Heparinised plasma was shaken
generously with chloroform (1:0-25) for four hours,
and the emulsion produced was centrifuged at
2500 rpm for 10 minutes; 0-1 ml of the middle layer
was taken and mixed with 0-1 ml of pyrogen-free
distilled water containing amoebocyte lysate. The
mixture was incubated at 37°C for 24 hours and
examined after one, four, and 24 hours. The test was
considered positive when a definite gelation occurred.
The results were scored as follows: (+) complete
gelation—that is, shape of the gel did not change
even if the tube were laid in a horizontal position;
(2+) incomplete gelation—that is, shape of the gel
changed slightly but did not flow out of the tube in
the horizontal position; (+++) definite increase in
viscosity and turbidity; and (−) slight flocculation
only. This last (−) score was interpreted as a
negative result. Titration of the concentration of
purified E. coli endotoxin (DiFco Laboratories)
dissolved in normal plasma from the batch used in
the initial tests showed: (3+) ≥ 5 ng/ml, 5 ng/ml
(2+) ≥ 1 ng/ml, 1 ng/ml > (1+) ≥ 0-5 ng/ml. The
result of each test was read by two independent
observers. The sensitivity of the lysate preparation
that was used allowed endotoxin concentrations above
0-5 ng/ml to be detected. In all patients cultures of
blood and ascites were examined on the day of the
endotoxin assay.

COAGULATION STUDIES

Plasma fibrinogen was estimated with a biuret
method, and fibrinogen degradation products
(FDP) by staphylococcal clumping test; platelets
were counted by phase microscopy; prothrombin
time and activated partial thromboplastin time
were also measured. All of the coagulation
studies were made within two days of the Limulus
assay.

The statistical significance of differences was
calculated by Student’s t test.

Results

Of the 42 plasma specimens of cirrhotic patients
with ascites, 25 (59-5%) showed positive (group A),
and 17 showed negative (group B) results in Limulus
assay. In more detail, 12 of group A showed
reactions greater or equal to 2+ (group A1), while the
remaining 13 showed 1+ reactions (group A2).
Comparison of group A and group B revealed no
significant differences in liver function tests (Table).

<table>
<thead>
<tr>
<th>Patients with ascites</th>
<th>No. of patients</th>
<th>Age (yr)</th>
<th>BP (mmHg)</th>
<th>TP (g/l)</th>
<th>Albumin (g/l)</th>
<th>Al.-ph. (UI/l)</th>
<th>S-GOT (UI/l)</th>
<th>TTT</th>
<th>Total bilirubin (μmol/l)</th>
<th>BSP (45')</th>
</tr>
</thead>
<tbody>
<tr>
<td>With endotoxaemia</td>
<td>25</td>
<td>50·8 ± 10·1</td>
<td>131·2 ± 21·8</td>
<td>80·2 ± 11·9</td>
<td>62 ± 9</td>
<td>28 ± 6</td>
<td>150 ± 60</td>
<td>153 ± 113</td>
<td>7·4 ± 5·0</td>
<td>39 ± 34</td>
</tr>
<tr>
<td>Without endotoxaemia</td>
<td>17</td>
<td>51·6 ± 8·9</td>
<td>130·0 ± 16·9</td>
<td>79·6 ± 12·1</td>
<td>63 ± 8</td>
<td>26 ± 4</td>
<td>133 ± 48</td>
<td>141 ± 108</td>
<td>8·1 ± 6·2</td>
<td>36 ± 31</td>
</tr>
<tr>
<td>Cases without ascites</td>
<td></td>
</tr>
<tr>
<td>With endotoxaemia</td>
<td>12</td>
<td>53·8 ± 12·3</td>
<td>138·8 ± 20·1</td>
<td>82·6 ± 13·1</td>
<td>66 ± 8</td>
<td>34 ± 5</td>
<td>142 ± 56</td>
<td>148 ± 104</td>
<td>7·8 ± 4·9</td>
<td>37 ± 23</td>
</tr>
<tr>
<td>Without endotoxaemia</td>
<td>21</td>
<td>52·1 ± 9·2</td>
<td>140·2 ± 17·3</td>
<td>83·8 ± 15·6</td>
<td>68 ± 10</td>
<td>36 ± 6</td>
<td>121 ± 52</td>
<td>128 ± 96</td>
<td>6·9 ± 3·8</td>
<td>32 ± 29</td>
</tr>
</tbody>
</table>

*Each value represents mean ± SD.
nor were there any significant differences in blood coagulation studies. Cultures of ascitic fluid and blood were all negative in the two groups.

Endotoxin was also demonstrated, although to a much lesser degree, in 12 of 33 (36-4%) of the control cirrhotics who had had no ascites (group C) as mentioned in our previous report (Tarao et al., 1977). There was a significant difference ($p < 0.05$) between the incidence of endotoxaemia in cirrhotics with and without ascites.

The specific gravity of ascites in group A was 1.020 ± 0.005 (mean ± SD), which was significantly greater than that in group B (1.015 ± 0.003) ($p < 0.01$) (Fig. 1). The specific gravity in group A$_1$ (1.021 ± 0.005) was greater than that in group A$_2$ (1.018 ± 0.005), but this was not statistically significant. The protein concentration in group A was 13.95 ± 7.18 g/l, which was nearly twice as high as that in group B (7.49 ± 3.60 g/l) and this difference was highly significant ($p < 0.01$) (Fig. 2). Moreover, there was a significant difference ($p < 0.05$) between group A$_1$ (16.87 ± 7.14 g/l) and group A$_2$ (11.26 ± 6.33 g/l). The albumin concentrations in group A (7.68 ± 4.60 g/l) were more than twice as high as those in group B (3.39 ± 1.58 g/l) ($p < 0.01$) (Fig. 3). The content of albumin in group A$_1$ (9.06 ± 5.40 g/l) was higher than that in group A$_2$ (6.17 ± 3.12 g/l), but this again was not significant. The globulin concentration in group A was 6.91 ± 3.21 g/l, which was approximately 1.6 times of that in group B (4.30 ± 1.75 g/l) ($p < 0.01$). The content of globulin in group A$_1$ (7.55 ± 2.50 g/l) was higher than that in group A$_2$ (5.94 ± 3.68 g/l), but this was also not significant.

The ascites-to-serum protein concentration ratio was 0.232 ± 0.129 in group A, which was significantly larger than that seen in group B (0.124 ± 0.059) ($p < 0.01$). The ratio in group A$_1$ (0.277 ± 0.129) was larger than that in group A$_2$ (0.190 ± 0.118), but this was not statistically significant. The ascites-to-serum albumin ratio was 0.266 ± 0.130 in group A, which was significantly larger than that in group B (0.134 ± 0.051) ($p < 0.01$). However, there was no significant difference between group A$_1$ (0.301 ± 0.129) and group A$_2$ (0.228 ± 0.127). Ascites-to-serum globulin ratio was 0.220 ± 0.132 in group A, which was significantly larger than that.
in group B (0.109 ± 0.045) (p < 0.01). Nevertheless, there was no significant difference between group A1 (0.258 ± 0.131) and group A2 (0.179 ± 0.126).

Discussion

As far as the mechanism of endotoxaemia was concerned, as there was no evidence of overt gram-negative bacterial infection in any case in our study; flora of the gastrointestinal tract appeared to be the only source of endotoxin. In normal conditions, endotoxin is absorbed from the intestinal tract (Ravin et al., 1960; Greene et al., 1961; Nolan et al., 1977), via the portal vein (Prytz et al., 1976) and completely cleared from the blood in the liver (Braude et al., 1955) by the Kupffer cells in terms of their detoxifying capacity. In support of the detoxifying capacity of the liver, Greene et al. (1961) showed that, in normal rabbits, endotoxin was found in the portal vein blood in 50% of the animals, but in only 17% of inferior vena caval bloods. If Thorotrast were given intravenously together with oral endotoxin, endotoxin was found in the blood of the inferior vena cava in 89%, suggesting a reduction of the liver's capacity to extract endotoxin delivered to it from the intestine. Moreover, it is a clinically well-known fact that, in patients with a severely damaged liver, as in fulminant hepatic failure, endotoxaemia is frequently observed (Wilkinson et al., 1974). On the other hand, experimental evidence indicates that, when a venous outflow block is produced in an intestinal loop, endotoxin rapidly diffuses through the intestinal wall (Nolan and Ali, 1972). On the above bases, we had expected that endotoxaemia would frequently be found in patients with liver cirrhosis and in our patients this was indeed the case.

In the present study, a close correlation between endotoxaemia and a high protein content in the ascitic fluid was reported in patients with cirrhosis and ascites. However, the nature of the present investigation did not allow us to draw definite conclusions about whether this was a casual relationship or whether they were parallel manifestations of the cirrhotic process. Nevertheless, there seem to be several possible explanations for this phenomenon. First, endotoxin may cause an increase in capillary permeability to the macromolecules in plasma. With regard to the effect of endotoxin on capillary permeability, Chien et al. (1963, 1964) found in dogs that intravenous injections of *Escherichia coli* endotoxin resulted in increases of both flow and concentration of intravenously administered macromolecules (131I-albumin and dextran) in the thoracic duct. They found at the same time that endogenous protein was also increased in the thoracic lymph leading to the lymph-to-serum ratios approaching unity. This same mechanism may be acting in cirrhotic patients with ascites and endotoxaemia, for ascitic fluid can exchange with blood through an enormous capillary bed under the visceral peritoneum (Prentice et al., 1952; Birkenfeld et al., 1958).

Second, it is possible that endotoxin may cause constriction of hepatic venules or small veins which results in portal hypertension of the postsinusoidal type. MacLean et al. (1956) demonstrated a marked rise in portal vein pressure in the dog after *Escherichia coli* endotoxin had been administered, and Weil et al. (1956) attributed the rise in portal vein pressure to localised venous spasm in the hepatic venous system caused by endotoxin. Chien et al. (1964) found in a study using dogs that portal hypertension caused by endotoxin was accompanied...
by an increase in the wedge hepatic venous pressure and a decrease in the pressure of large hepatic veins, central venous pressure, and hepatic blood flow, and concluded that constriction of hepatic venules or small veins was elicited by endotoxin. On the other hand, Witte et al. (1969) investigated lymph circulation in cirrhotic patients and demonstrated that, when postsinusoidal obstruction predominates, highly permeable liver sinuses are the major source of increased thoracic duct lymph high in protein but, as presinusoidal block develops, liver lymph is diluted in the thoracic duct by increasing amounts of intestinal lymph low in protein, and protein in thoracic duct lymph fall. Moreover, hepatic lymph has been shown to be related closely to the formation of ascitic fluid especially when hepatic venous outflow block exists (Bolton and Barnard, 1931; Hyatt et al., 1955), and, indeed, it is well known that ascitic fluid resulting from hepatic venous outflow block in man such as in the Budd-Chiari syndrome (Gibson, 1960; Sherlock, 1968), and in experimental animals (Hyatt and Smith, 1954; Losowsky and Davidson, 1962) is characterised by a high protein content.

These observations suggest that endotoxaemia in patients with cirrhosis and ascites would also exert similar effects and that the ascites produced might contain higher concentrations of protein and that the increased protein concentration and resulting high colloid osmotic pressure of the ascitic fluid would in turn accelerate ascites formation, according to Starling’s principle (Starling, 1894; 1896).

The authors are obliged to Professor Kunio Okuda of Chiba University and to Dr Ting D. Poh for their critical review of the manuscript and indispensable assistance in the preparation of the manuscript, and to Mrs Hideko Sato for her technical assistance.

References

